初中數(shù)學教學設計(合集15篇)
作為一位優(yōu)秀的人民教師,時常需要編寫教學設計,借助教學設計可以讓教學工作更加有效地進行。寫教學設計需要注意哪些格式呢?下面是小編整理的初中數(shù)學教學設計,歡迎大家分享。
初中數(shù)學教學設計1
新學期已到來,我們又要投入到緊張、繁忙而有序地教育教學工作中,使自己今后的教學工作中能有效地、有序地貫徹新的教育精神,圍繞我校新學期的工作計劃要求制定初中一年級數(shù)學教學設計方案:
一、教材分析:
本學期是本年級學生初中學習階段的第二學期、新授課程主要有相交線與平行線、平面直角坐標系、三角形、二元一次方程組、不等式與不等式組、數(shù)據(jù)的收集、現(xiàn)行教材、教學大綱要求學生從身邊的實際問題出發(fā),乘坐觀察、思考、探究、討論、歸納之舟,去探索、發(fā)現(xiàn)數(shù)學的奧妙,用學到的本領去解決復習鞏固、綜合運用、拓展探索等不同層次的問題、教師在靈活選用現(xiàn)有教材的基礎上,應適度引用新例,把初中數(shù)學各單元的知識明晰化、條理化、規(guī)律化,激勵學生自主、合作、探究學習,培養(yǎng)學習興趣和習慣品質(zhì)、
二、教學目標:
本學期的`數(shù)學教學要從學生的實際問題出發(fā),積極引導學生觀察、思考、探究、討論、歸納數(shù)學問題,要鼓勵學生去探索、發(fā)現(xiàn)數(shù)學的奧妙,用學到的本領去解決復習鞏固、綜合運用、拓展探索等不同層次的問題、教學中既要注意知識的覆蓋面,關注中考的重點、熱點和難點,又要突出數(shù)學知識在社會、科技中的運用,讓學生在學習、練習中熟記知識要點、考試內(nèi)容,掌握應試技巧和數(shù)學思想方法,提高綜合素質(zhì),培養(yǎng)創(chuàng)新意識和探索能力、在期末考試中力爭生均分87分左右,及格率75%以上,并將低分率控制到10%以下,綜合成績縣前五、
三、教學措施:
1、認真鉆研教材,積極捕捉課改信息,盡力倡導自主、合作、探究學習,努力培養(yǎng)學生的學習興趣和個性品質(zhì)、
2、把握學生思想動態(tài),及時與學生溝通,搞好師生關系、
3、充分利用課堂教學時間,幫助學生理解教學重難點,訓練考點、熱點,強化記憶,形成能力,提高成績、
4、改進教學方法,用掛圖,實物創(chuàng)設情景進行教學,力求課堂的多樣化、生活化和開放化,力爭有更多的師生互動、生生互動的機會、
5、精講多練,在教學新知識的同時,注重舊知識的復習,使所學知識系統(tǒng)化,條理化,讓學生在練習、測試中鞏固提高,減少遺忘、
6、開辟第二課堂,在不加重學生負擔的前提下,積極引導學生閱讀課外書,促進學生自主、合作,探究學習,培養(yǎng)興趣,提高能力、
7、加強培優(yōu)補中促差生的個別輔導,因材施教,培養(yǎng)學生的個性特長、特別要多鼓勵后進生,提高他們的學習興趣,培養(yǎng)他們良好的學習習慣:(1)課前預習習慣;(2)積極思考,主動發(fā)言習慣;(3)自主作業(yè)習慣;(4)課后復習習慣。
初中數(shù)學教學設計2
一、學情分析
八年級學生具有強烈的好勝心和求知欲,抽象思維趨于成熟,形象直觀思維能力較強,具有一定的獨立思考、實踐操作、合作交流、歸納概括等能力,能進行簡單的推理
二、教材分析
這節(jié)課是人教版八年級第十八章第一節(jié)的內(nèi)容,教學內(nèi)容是勾股定理公式的推導、證明及其簡單的應用。本節(jié)課是在學生已經(jīng)掌握了直角三角形有關性質(zhì)的基礎上進行學習的,勾股定理是幾何中最重要的定理之一,它揭示的是直角三角形中三條邊之間的數(shù)量關系,將數(shù)與形密切聯(lián)系起來,為以后學習四邊形、圓、解直角三角形等數(shù)學知識奠定了基礎。它有著豐富的歷史背景,在數(shù)學的發(fā)展中起著重要的作用,在現(xiàn)實生活中也有著廣泛的應用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
三、教學目標設計
知識與技能
探索勾股定理的內(nèi)容并證明,能夠運用勾股定理進行簡單計算和運用
過程與方法
。1)通過觀察分析,大膽猜想,探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
。2)在探索勾股定理的過程中,讓學生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學過程,并體會數(shù)形結(jié)合和從特殊到一般的思想方法。
情感態(tài)度與價值
。1)在探索勾股定理的過程中,培養(yǎng)學生的合作交流意識和探索精神,增進數(shù)學學習的信心,感受數(shù)學之美,探究之趣。
。2)利用遠程教育資源介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學生的民族自豪感和鉆研精神。
四、教學重點難點
教學重點
探索和證明勾股定理 ·教學難點
用拼圖的方法證明勾股定理
五、教學方法
(學法)“引導探索法”
(自主探究,合作學習,采用小組合作的方法。
六、教具準備
課件、三角板
七、教學過程設計
教學環(huán)節(jié)1
教學過程:創(chuàng)設情境探索新知 教師活動:出示第24屆國際數(shù)學家大會的會徽的圖案向?qū)W生提問
(1) 你見過這個圖案嗎?
。2) 你聽說過“勾股定理”嗎?
學生活動:學生思考回答
設計意圖:目的在于從現(xiàn)實生活中提出“趙爽弦圖”,進一步激發(fā)學生積極主動地投入到探索活動中,同時為探索勾股定理提供背景材料。
教學環(huán)節(jié)2 教學過程:實驗操作獲取新知歸納驗證完善新知
教師活動:出示課件,引導學生探索
學生活動:猜想實驗合作交流畫圖測量拼圖驗證
設計意圖:滲透從特殊到一般的數(shù)學思想。為學生提供參與數(shù)學活動的時間和空間,發(fā)揮學生的主體作用;讓學生自己動手拼出趙爽弦圖,培養(yǎng)他們學習數(shù)學的成就感。通過拼圖活動,使學生對定理的理解更加深刻,體會數(shù)學中的數(shù)形結(jié)合思想,調(diào)動學生思維的積極性,激發(fā)學生探求新知的欲望。給學生充分的時間與空間討論、交流,鼓勵學生敢于發(fā)表自己的見解,感受合作的重要性。
教學環(huán)節(jié)3 教學過程:解決問題應用新知
教師活動:出示例題和練習
學生活動:交流合作,解決問題
設計意圖:通過運用勾股定理對實際問題的.解釋和應用,培養(yǎng)學生從身邊的事物中抽象出幾何模型的能力,使學生更加深刻地認識數(shù)學的本質(zhì):數(shù)學來源于生活,并能服務于生活,順利解決如何將實際問題轉(zhuǎn)化為求直角三角形邊長的問題,培養(yǎng)學生的數(shù)學應用意識。
教學環(huán)節(jié)4 教學內(nèi)容:課堂小結(jié)鞏固新知布置作業(yè)
教師活動:引導學生小結(jié)
學生活動:討論交流、自由發(fā)言
設計意圖:既引導學生從面積的角度理解勾股定理,又從能力、情感、態(tài)度等方面關注學生對課堂整體感受,在輕松愉快的氣氛中體會收獲的喜悅。
通過布置課外作業(yè),給學生留有繼續(xù)學習的空間和興趣,及時獲知學生對本節(jié)課知識的掌握情況,適當?shù)恼{(diào)整教學進度和教學方法,并對學習有困難的學生給與指導。
八、板書設計
勾股定理:如果直角三角形的兩直角邊分別為a和b,斜邊為c,那么 a2+b2=c2。
九、習題拓展
如圖,將長為10米的梯子AC斜靠在墻上,BC長為6米。
。1)求梯子上端A到墻的底端B的距離AB。
。2)若梯子下部C向后移動2米到C1點,那么梯子上部A向下移動了多少米?
十、作業(yè)設計
1。收集有關勾股定理的證明方法, 下節(jié)課展示、交流。
2。做一棵奇妙的勾股樹(選做)
初中數(shù)學教學設計3
一、素質(zhì)教育目標
(一)知識教學點
1、要求學生學會用移項解方程的方法。
2、使學生掌握移項變號的基本原則。
(二)能力訓練點
由移項變形方法的教學,培養(yǎng)學生由算術解法過渡到代數(shù)解法的解方程的基本能力。
。ㄈ┑掠凉B透點
用代數(shù)方法解方程中,滲透了數(shù)學中的化未知為已知的重要數(shù)學思想。
。ㄋ模┟烙凉B透點
用移項法解方程明顯比用前面的方法解方程方便,體現(xiàn)了數(shù)學的方法美。
二、學法引導
1、教學方法:采用引導發(fā)現(xiàn)法發(fā)現(xiàn)法則,課堂訓練體現(xiàn)學生的主體地位,引進競爭機制,調(diào)動課堂氣氛。
2、學生學法:練習→移項法制→練習。
三、重點、難點、疑點及解決辦法
1、重點:移項法則的掌握。
2、難點:移項法解一元一次方程的步驟。
3、疑點:移項變號的掌握。
四、課時安排
3課時
五、教具學具準備
投影儀或電腦、自制膠片、復合膠片。
六、師生互動活動設計
教師出示探索性練習題,學生觀察討論得出移項法則,教師出示鞏固性練習,學生以多種形式完成。
七、教學步驟
。ㄒ唬﹦(chuàng)設情境,復習導入
師提出問題:上節(jié)課我們研究了方程、方程的解和解方程的有關知識,請同學們首先回顧上節(jié)課的有關內(nèi)容;回答下面問題。
。ǔ鍪就队1)
利用等式的性質(zhì)解方程
。1)xx;(2)xxx;
解:方程的兩邊都加7,解:方程的兩邊都減去x,
得x,xx 得x,
即x 、 合并同類項得x。
【教法說明】通過上面兩小題,對用等式性質(zhì)解方程進行鞏固、回憶,為講解新方法奠定基礎。
提出問題:下面我們觀察上面方程的變形過程,從中觀察變化的項的規(guī)律是什么?
(二)探索新知,講授新課
投影展示上面變形的過程,用制作復合式運動膠片將上面的`變形展示如下,讓學生觀察在變形過程中,變化的項的變化規(guī)律,引出新知識。
。ǔ鍪就队2)
師提出問題:
1、上述演示中,兩個題目中的哪些項改變了在原方程中的位置?怎樣變的?
2、改變的項有什么變化?
學生活動:分學習小組討論,各組把討論的結(jié)果派代表上報教師,分四組,這樣節(jié)省時間。
師總結(jié)學生活動的結(jié)果:大家討論的結(jié)論,有如下共同點:①方程(1)的已知項從左邊移到了方程右邊,方程(2)的項從右邊移到了左邊;②這些位置變化的項都改變了原來的符號。
【教法說明】在這里的投影變化中,教師要抓住時機,讓學生發(fā)現(xiàn)變化的規(guī)律,準確掌握這種變化的法則,也是為以后解更復雜方程打下好的基礎。
師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項、這里應注意移項要改變符號。
。ㄈ﹪L試反饋,鞏固練習
師提出問題:我們可以回過頭來,想一想剛解過的兩個方程哪個變化過程可以叫做移項。
學生活動:要求學生對課前解方程的變形能說出哪一過程是移項。
【教法說明】可由學生對前面兩個解方程問題用移項過程,重新寫一遍,以理解解方程的步驟和格式。
對比練習:(出示投影3)
解方程:(1);(2);
。3);(4)、
學生活動:把學生分四組練習此題,一組、二組同學(1)(2)題用等式性質(zhì)解,(3)(4)題移項變形解;三、四組同學(1)(2)題用移項變形解,(3)(4)題用等式性質(zhì)解。
師提出問題:用哪種方法解方程更簡便?解方程的步驟是什么?(答:移項法;移項、合并同類項、檢驗、)
【教法說明】這部分教學旨在于使學生學會用移項這一手段解方程的方法,通過學生動手嘗試,理解解方程的步驟,從而掌握移項這一法則。
鞏固練習:(出示投影4)
通過移項解下列方程,并寫出檢驗。
。1);(2);
。3);(4)、
【教法說明】這組題訓練學生解題過程的嚴密性,故采取學生親自動手做,四個同學板演形式完成。
。ㄋ模┳兪接柧,培養(yǎng)能力
(出示投影5)
口答:
1、下面的移項對不對?如果不對,錯在哪里?應怎樣改正?
。1)從,得到;
(2)從,得到;
(3)從,得到;
2、小明在解方程時,是這樣寫的解題過程:
(1)小明這樣寫對不對?為什么?
。2)應該怎樣寫?
【教法說明】通過以上兩題進一步印證移項這種變形的規(guī)律,即“移項要變號”、要使學生認清這里的移項是把某項從方程的一邊移到另一邊而不是在同一邊交換位置,弄懂解方程的書寫格式是方程在變形,變形時保持“左右兩邊相等”這一數(shù)學模式。
。ǔ鍪就队6)
用移項解方程:
。1);(2);
。3);(4)、
【教法說明】這組題增加了難度,即移項變形是左右兩邊都有可移的項,教學時由學生思考后再進行解答書寫,可提醒學生先分組討論,各組由一名同學敘述解題過程,教師歸納出最嚴密最精煉的解題過程,最后全體學生都做這幾個題目。
學生活動:5分鐘競賽:規(guī)則是分兩大組,基礎分100分,每組同學全對1人加10分,不全對1人減10分,互相判題,學習委員記分。
(出示投影7)
解下列方程:
。1);(2);(3);
。4);(5);(6)、
【教法說明】這組題用競賽的形式,由學生獨立完成是為了培養(yǎng)學生的解方程的速度和能力,同時激發(fā)學生的競爭意識,從而達到調(diào)動全體學生參與的目的,而互相評判更增加了課堂上的民主意識。
。ㄎ澹w納小結(jié)
師:今天我們學習了解方程的變形方法,通過學習我們應該明確兩個方面的問題:①解方程需把方程中的項從一邊移到另一邊,移項要變號這是重點、②檢驗要把所得未知數(shù)的值代入原方程。
初中數(shù)學教學設計4
現(xiàn)代教學論研究指出,從本質(zhì)上講,學生學習的根本原因是問題。在數(shù)學課堂教學中,教師可根據(jù)不同的教學內(nèi)容,圍繞不同的教學目標,設計出符合學生實際的教學問題,圍繞所設計的問題開展教學活動。這樣,在課堂教學環(huán)節(jié)中,問題該怎樣設計?圍繞問題該怎樣進行教學,才能使教學效率得以提高?這是擺在我們面前急需解決的問題。
本文將結(jié)合自己的教學實踐,就問題設計的策略及反思等方面談談自己的看法。
一、注重問題情境的創(chuàng)設
著名數(shù)學家費賴登塔爾認為:“數(shù)學源于現(xiàn)實又寓于現(xiàn)實,數(shù)學教學應從學生所接觸的客觀實際中提出問題,然后升華為數(shù)學概念、運算法則或數(shù)學思想!边@一觀念既反映了數(shù)學的本質(zhì),同時說明了在數(shù)學課堂教學中創(chuàng)設問題情境的重要性。比如,在《有理數(shù)的加法》一節(jié)的教學導入時,我首先出示了一周來本班的積分統(tǒng)計表(表中的得分用正數(shù)表示,失分用負數(shù)表示,)讓學生觀察:
星期 一 二 三 四 五 六 合計
積分 +3 -2 -4 -2 +2 +4
然后提出問題:“誰能幫我們班算出這一周的總積分呢?”結(jié)果我發(fā)現(xiàn)大多數(shù)同學能用“抵消”的方法統(tǒng)計出這一周本班的總積分。然后我出了一道算式題:“(+3)+(-2)+(-4)+(-2)=?”發(fā)現(xiàn)學生不知道該怎樣算。當學生產(chǎn)生這樣的認知沖突時我便引入了本節(jié)課要學習的內(nèi)容,最后我用表中的數(shù)據(jù)分成了幾種類型,如正數(shù)加正數(shù)、負數(shù)加負數(shù)、正數(shù)加負數(shù)等,展開新知學習,教學效果較以前有明顯改觀。
本節(jié)課成功之處在于:(1)導入的情境問題貼近學生的現(xiàn)實,調(diào)動了學生的積極性。(2)情境問題為后面的教學埋下了伏筆,引發(fā)了學生的認知沖突。當然,情境問題的創(chuàng)設不當,會直接影響教學。比如,在《函數(shù)》一節(jié)的教學時,我用游樂園中的摩天輪引入,當我提出問題:“同學們,當你坐在摩天輪上,隨著時間的變化,你離開地面的高度是如何變化的?”我發(fā)現(xiàn)學生幾乎沒有反應,只是偶爾聽到:“摩天輪?”“很危險……”本來是一個很典型的函數(shù)問題,只因為農(nóng)村學生對該情境的認識模糊,一時沒有進入到虛擬情境中來,導致課堂開端出現(xiàn)“僵局”,也影響了后面的教學工作的勝利開展。
2、教學重點、難點處的問題設計
初中數(shù)學課堂教學中重點與難點的處理將直接影響教學效果。通過設計好的問題串可以強化重點與突破難點。例如,《結(jié)識拋物線》一節(jié)的教學重點就是做二次函數(shù)y=x2的圖像并根據(jù)圖像認識和理解函數(shù)的性質(zhì)。而作圖過程又是一個難點問題,要從所畫的圖像中發(fā)現(xiàn)并歸納性質(zhì),首先得畫出較準確的函數(shù)圖像。在學生畫圖像的過程中,我抓住學生的幾種錯誤畫法提出了三個問題讓學生討論交流:(1)根據(jù)你畫的圖像,給自變量x任取一個值,函數(shù)y有唯一的值與它對應嗎?(2)自變量x的范圍是什么?(3)在0 3、例題或課堂練習中的問題設計 例題教學具有及時鞏固知識和靈活運用知識的雙重功能,隨堂練習是檢查學生的數(shù)學學習效果和培養(yǎng)學生思維的有效手段之一。數(shù)學課堂教學中,教師通過優(yōu)選例題,精心設計層次分明的練習,能夠讓學生以積極的態(tài)度去思考并解決問題,獲得問題解決的成就感和快樂感。例如筆者在《反比例函數(shù)的圖像與性質(zhì)》一節(jié)的教學中設計了一道這樣的問題:已知A(-2,y1)、B(-1,y2)、C(2,y3)三點都在反比例函數(shù)y=k/x(k>0)圖像上,(1)比較y1、y2、y3的大小關系。(2)若D(a,y1)、E(b,y2)、F(c,y3)三點也在反比例函數(shù)y=k/x(k>0)的圖像上,其中a0判斷y1、y2、y3的大小關系。教學中我發(fā)現(xiàn)多數(shù)學生對問題(1)采用了直接代入計算的方法得到結(jié)果,對問題(2)顯然用代入法難以得到結(jié)果,這時,我讓學生小組討論來解決。經(jīng)過討論后,學生A回答:“因為k>0時,反比例函數(shù)y隨x的增大而減小,而a 4、在學習反思中的問題設計 初中學生學習數(shù)學的方法相對欠缺,學生“重結(jié)論,輕過程”的現(xiàn)象較普遍,對學習結(jié)果的反思意識淡薄,自我評價不徹底,做錯的題目一錯再錯。作為教師,在平時的教學中要注重引導,徹底分析錯因,讓學生在錯題中有反思的機會。例如,在一元一次方程的教學中,我發(fā)現(xiàn)學生解含有分母的方程時很容易出錯,針對學生做錯的題目,我設計了如的表格: 通過引導學生對錯因徹底分析與校正,學生明白了產(chǎn)生錯誤的真正原因是什么,認識到了自己的不足。然后我出了幾道解方程的練習,結(jié)果發(fā)現(xiàn),學生確實重視了錯誤,效果明顯有所好轉(zhuǎn)。 總之,在數(shù)學教學中,教學問題的設計確實是一種學問,是一種藝術。要讓學生在實實在在的問題情境中去親歷體驗,在對問題的分析、探索與交流的過程中主動思考,與人分享成果,來體驗成功的快樂,增強他們的自信心。 一、教學目標: 1、知道一次函數(shù)與正比例函數(shù)的定義. 2、理解掌握一次函數(shù)的圖象的特征和相關的性質(zhì); 3、弄清一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系. 4、掌握直線的平移法則簡單應用. 5、能應用本章的基礎知識熟練地解決數(shù)學問題。 二、教學重、難點: 重點:初步構(gòu)建比較系統(tǒng)的函數(shù)知識體系。 難點:對直線的平移法則的理解,體會數(shù)形結(jié)合思想。 三、教學過程: 1、一次函數(shù)與正比例函數(shù)的定義: 一次函數(shù):一般地,若y=kx+b(其中k,b為常數(shù)且k≠0),那么y是一次函數(shù) 正比例函數(shù):對于 y=kx+b,當b=0, k≠0時,有y=kx,此時稱y是x的正比例函數(shù),k為正比例系數(shù)。 2. 一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系: (1)從解析式看:y=kx+b(k≠0,b是常數(shù))是一次函數(shù);而y=kx(k≠0,b=0)是正比例函數(shù),顯然正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)是正比例函數(shù)的推廣。 (2)從圖象看:正比例函數(shù)y=kx(k≠0)的圖象是過原點(0,0)的一條直線;而一次函數(shù)y=kx+b(k≠0)的圖象是過點(0,b)且與y=kx 平行的一條直線。 基礎訓練: 1. 寫出一個圖象經(jīng)過點(1,- 3)的函數(shù)解析式為: 。 2.直線y = - 2X - 2 不經(jīng)過第 象限,y隨x的增大而。 3.如果P(2,k)在直線y=2x+2上,那么點P到x軸的距離是:。 4.已知正比例函數(shù) y =(3k-1)x,,若y隨 x的增大而增大,則k是: 。 5、過點(0,2)且與直線y=3x平行的直線是: 。 6、若正比例函數(shù)y =(1-2m)x 的圖像過點A(x1,y1)和點B(x2,y2)當x1<x2時,y1>y2,則m的取值范圍是: 。 7、若y-2與x-2成正比例,當x=-2時,y=4,則x= 時,y = -4。 8、直線y=- 5x+b與直線y=x-3都交y軸上同一點,則b的值為 。 9、已知圓O的半徑為1,過點A(2,0)的直線切圓O于點B,交y軸于點C。(1)求線段AB的長。(2)求直線AC的解析式。 四、教學反思: 教師認真?zhèn)湔n,查閱資料,搜集有針對性的訓練題,學生只要課堂上能按照教師的.思路去做就很高效了。課堂訓練以競賽的形式進行,似乎有一定的刺激性,但缺少后續(xù)的刺激活動,學生沒有保持住持久的緊張狀態(tài)。 課前先把所有的復習任務都交給學生完成,教師指導學生瀏覽教材、查閱資料歸納本章的基本概念、基本性質(zhì)、基本方法,并收集與每個知識點相關的有針對性的問題,也可以自己編題,同時要把每一個問 題的答案做出來,盡量要一題多解。再由小組長組織小組成員匯編,在匯編過程中要去粗取精。課堂就是以小組為單位學生展示自己的舞臺,在這個舞臺上學生是主角,在這個舞臺上學生可以成果共享,在這個舞臺上學生收獲著自己的收獲。臺上他們是主角,臺下他們也是主角。 從另一個角度體會到了減輕學生負擔的深刻含義,不單指減少學生課后學習的時間,更重要的是提高學生學習的質(zhì)量、效率,我的這節(jié)課失敗之處就是過分的注重了前者,而忽略了實效性。那么在今后的復習課教學中我要多思多想、多問多聽(問問老師、聽聽學生的想法),力求在真正減輕學生負擔的基礎上打造高效課堂。 教學目的 1、使學生了解無理數(shù)和實數(shù)的概念,掌握實數(shù)的分類,會準確判斷一個數(shù)是有理數(shù)還是無理數(shù)。 2、使學生能了解實數(shù)絕對值的意義。 3、使學生能了解數(shù)軸上的點具有一一對應關系。 4、由實數(shù)的分類,滲透數(shù)學分類的思想。 5、由實數(shù)與數(shù)軸的一一對應,滲透數(shù)形結(jié)合的思想。 教學分析 重點:無理數(shù)及實數(shù)的概念。 難點:有理數(shù)與無理數(shù)的區(qū)別,點與數(shù)的一一對應。 教學過程 一、復習 1、什么叫有理數(shù)? 2、有理數(shù)可以如何分類? (按定義分與按大小分。) 二、新授 1、無理數(shù)定義:無限不循環(huán)小數(shù)叫做無理數(shù)。 判斷:無限小數(shù)都是無理數(shù);無理數(shù)都是無限小數(shù);帶根號的數(shù)都是無理數(shù)。 2、實數(shù)的定義:有理數(shù)與無理數(shù)統(tǒng)稱為實數(shù)。 3、按課本中列表,將各數(shù)間的聯(lián)系介紹一下。 除了按定義還能按大小寫出列表。 4、實數(shù)的`相反數(shù): 5、實數(shù)的絕對值: 6、實數(shù)的運算 講解例1,加上(3)若|x|=π(4)若|x—1|=,那么x的值是多少? 例2,判斷題: 。1)任何實數(shù)的偶次冪是正實數(shù)。() 。2)在實數(shù)范圍內(nèi),若| x|=|y|則x=y。() 。3)0是最小的實數(shù)。() 。4)0是絕對值最小的實數(shù)。() 解:略 三、練習 P148練習:3、4、5、6。 四、小結(jié) 1、今天我們學習了實數(shù),請同學們首先要清楚,實數(shù)是如何定義的,它與有理數(shù)是怎樣的關系,二是對實數(shù)兩種不同的分類要清楚。 2、要對應有理數(shù)的相反數(shù)與絕對值定義及運算律和運算性質(zhì),來理解在實數(shù)中的運用。 五、作業(yè) 1、P150習題A:3。 2、基礎訓練:同步練習1。 公式 教學目標 1.了解公式的意義,使學生能用公式解決簡單的實際問題; 2.初步培養(yǎng)學生觀察、分析及概括的能力; 3.通過本節(jié)課的教學,使學生初步了解公式來源于實踐又反作用于實踐。 教學建議 一、教學重點、難點 重點:通過具體例子了解公式、應用公式. 難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。 二、重點、難點分析 人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。 三、知識結(jié)構(gòu) 本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。 四、教法建議 1.對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創(chuàng)設情境,引導學生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的`對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。 2.在教學過程中,應使學生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學生自己嘗試探求數(shù)量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。 3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。 教學設計示例 公式 一、教學目標 。ㄒ唬┲R教學點 1.使學生能利用公式解決簡單的實際問題. 2.使學生理解公式與代數(shù)式的關系. (二)能力訓練點 1.利用數(shù)學公式解決實際問題的能力. 2.利用已知的公式推導新公式的能力. 。ㄈ┑掠凉B透點 數(shù)學來源于生產(chǎn)實踐,又反過來服務于生產(chǎn)實踐. 。ㄋ模┟烙凉B透點 數(shù)學公式是用簡潔的數(shù)學形式來闡明自然規(guī)定,解決實際問題,形成了色彩斑斕的多種數(shù)學方法,從而使學生感受到數(shù)學公式的簡潔美. 二、學法引導 1.數(shù)學方法:引導發(fā)現(xiàn)法,以復習提問小學里學過的公式為基礎、突破難點 2.學生學法:觀察→分析→推導→計算 三、重點、難點、疑點及解決辦法 1.重點:利用舊公式推導出新的圖形的計算公式. 2.難點:同重點. 3.疑點:把要求的圖形如何分解成已經(jīng)熟悉的圖形的和或差. 四、課時安排 1課時 五、教具學具準備 投影儀,自制膠片。 六、師生互動活動設計 教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發(fā)學生求圖形的面積,師生總結(jié)求圖形面積的公式. 七、教學步驟 。ㄒ唬﹦(chuàng)設情景,復習引入 師:同學們已經(jīng)知道,代數(shù)的一個重要特點就是用字母表示數(shù),用字母表示數(shù)有很多應用,公式就是其中之一,我們在小學里學過許多公式,請大家回憶一下,我們已經(jīng)學過哪些公式,教法說明,讓學生一開始就參與課堂教學,使學生在后面利用公式計算感到不生疏. 在學生說出幾個公式后,師提出本節(jié)課我們應在小學學習的基礎上,研究如何運用公式解決實際問題. 板書:公式 師:小學里學過哪些面積公式? 板書:S=ah (出示投影1)。解釋三角形,梯形面積公式 【教法說明】讓學生感知用割補法求圖形的面積。 一、教材分析 本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(六三學制)七年級下冊第七章第三節(jié)多邊形內(nèi)角和。 二、教學目標 1、知識目標:了解多邊形內(nèi)角和公式。 2、數(shù)學思考:通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。 3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。 4、情感態(tài)度目標:通過猜想、推理活動感受數(shù)學活動充滿著探索以及數(shù)學結(jié)論的確定性,提高學生學習熱情。 三、教學重、難點 重點:探索多邊形內(nèi)角和。 難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。 四、教學方法:引導發(fā)現(xiàn)法、討論法 五、教具、學具 教具:多媒體課件 學具:三角板、量角器 六、教學媒體:大屏幕、實物投影 七、教學過程: 。ㄒ唬﹦(chuàng)設情境,設疑激思 師:大家都知道三角形的內(nèi)角和是180,那么四邊形的內(nèi)角和,你知道嗎? 活動一:探究四邊形內(nèi)角和。 在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。 方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360。 方法二:把兩個三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360。 接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。 師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的? 活動二:探究五邊形、六邊形、十邊形的內(nèi)角和。 學生先獨立思考每個問題再分組討論。 關注: (1)學生能否類比四邊形的方式解決問題得出正確的結(jié)論。 。2)學生能否采用不同的方法。 學生分組討論后進行交流(五邊形的內(nèi)角和) 方法1:把五邊形分成三個三角形,3個180的和是540。 方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180的和減去一個周角360。結(jié)果得540。 方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180的和減去一個平角180,結(jié)果得540。 方法4:把五邊形分成一個三角形和一個四邊形,然后用180加上360,結(jié)果得540。 師:你真聰明!做到了學以致用。 交流后,學生運用幾何畫板演示并驗證得到的方法。 得到五邊形的內(nèi)角和之后,同學們又認真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720,十邊形內(nèi)角和是1440。 。ǘ┮晁伎,培養(yǎng)創(chuàng)新 師:通過前面的討論,你能知道多邊形內(nèi)角和嗎? 活動三:探究任意多邊形的內(nèi)角和公式。 思考: 。1)多邊形內(nèi)角和與三角形內(nèi)角和的關系? 。2)多邊形的邊數(shù)與內(nèi)角和的關系? 。3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關系? 學生結(jié)合思考題進行討論,并把討論后的結(jié)果進行交流。 發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180的.和,五邊形內(nèi)角和是3個180的和,六邊形內(nèi)角和是4個180的和,十邊形內(nèi)角和是8個180的和。發(fā)現(xiàn)2:多邊形的邊數(shù)增加1,內(nèi)角和增加180。 發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n—2)的關系。 得出結(jié)論:多邊形內(nèi)角和公式:(n—2)·180。 (三)實際應用,優(yōu)勢互補 1、口答:(1)七邊形內(nèi)角和() 。2)九邊形內(nèi)角和() 。3)十邊形內(nèi)角和() 2、搶答:(1)一個多邊形的內(nèi)角和等于1260,它是幾邊形? 。2)一個多邊形的內(nèi)角和是1440,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是()。 3、討論回答:一個多邊形的內(nèi)角和比四邊形的內(nèi)角和多540,并且這個多邊形的各個內(nèi)角都相等,這個多邊形每個內(nèi)角等于多少度? (四)概括存儲 學生自己歸納總結(jié): 1、多邊形內(nèi)角和公式 2、運用轉(zhuǎn)化思想解決數(shù)學問題 3、用數(shù)形結(jié)合的思想解決問題 。ㄎ澹┳鳂I(yè):練習冊第93頁1、2、3 八、教學反思: 1、教的轉(zhuǎn)變 本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學生自覺探究數(shù)學問題,體驗發(fā)現(xiàn)的樂趣。 2、學的轉(zhuǎn)變 學生的角色從學會轉(zhuǎn)變?yōu)闀䦟W。本節(jié)課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。 3、課堂氛圍的轉(zhuǎn)變 整節(jié)課以“流暢、開放、合作、隱導”為基本特征,教師對學生的思維減少干預,教學過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學生與學生,學生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。 課題:12.3等腰三角形(第一課時) 教學內(nèi)容:新人教版八年級上冊十二章第三節(jié)等腰三角形的第一課時 任課教師:東灣中學李曉偉 設計理念: 教學的實質(zhì)是以教材中提供的素材或?qū)嶋H生活中的一些問題為載體,通過一系列探究互動過程,滲透分類討論、數(shù)形結(jié)合和方程的思想方法,達到學生知識的構(gòu)建、能力的培養(yǎng)、情感的陶冶、意識的創(chuàng)新。 ㈠教材的地位和作用分析 等腰三角形是新人教版八年級上冊十二章第三節(jié)等腰三角形的第一課時的內(nèi)容。本節(jié)課是在前面學習了三角形的有關概念及性質(zhì)、軸對稱變換、全等三角形、垂直平分線和尺規(guī)作圖的基礎上,研究等腰三角形的定義及其重要性質(zhì),它既是前面所學知識的延伸,也是后面直角三角形、等邊三角形的知識的重要儲備,我們常常利用它證明角相等、線段相等、兩直線垂直,因此本節(jié)課具有承上啟下的重要作用。 另外,本堂課通過“活動探究”、“觀察—猜想—證明”等途徑,進一步培養(yǎng)學生的動手能力、觀察能力、分析能力和邏輯推理能力,因此,本堂課無論在知識上,還是在對學生能力的培養(yǎng)及情感教育等方面都有著十分重要的作用。 ㈡教學內(nèi)容的分析 本堂課是等腰三角形的第一堂課,在認識等腰三角形的基礎上著重介紹“等腰三角形的性質(zhì)”。在教學設計的過程中,通過展示我國今年舉辦的精彩絕倫的盛會—上海世博會圖片中的等腰三角形,結(jié)合云南豐富的文化資源,讓學生感知生活中處處有數(shù)學,感受圖形的和諧美、對稱美;通過學生感興趣的數(shù)學情景引入等腰三角形定義,提高學生的學習樂趣;讓學生通過動手剪等腰三角形、對折等腰三角形等活動,探究發(fā)現(xiàn)等腰三角形的性質(zhì),經(jīng)歷知識的“再發(fā)現(xiàn)”過程。在探究活動的過程中發(fā)展創(chuàng)新思維能力,改變學生的學習方式。在發(fā)現(xiàn)等腰三角形的性質(zhì)的基礎上,再經(jīng)過推理證明等腰三角形的性質(zhì),使得推理證明成為學生觀察、實驗、探究得出結(jié)論的自然延伸,有機地將等腰三角形的認識與等腰三角形的性質(zhì)的證明結(jié)合起來,從中發(fā)展學生推理能力。 在例題的選取上,注重聯(lián)系實際,激發(fā)學生學習興趣,讓學生主動用數(shù)學知識解決實際問題,同時滲透分類討論、數(shù)形結(jié)合和方程的數(shù)學思想方法,讓學生形成自我的數(shù)學思維和能力,發(fā)展學生應用數(shù)學的意識。 二、目標及其解析 ㈠教學目標: 知識技能: 1.了解等腰三角形的概念,認識等腰三角形是軸對稱圖形;2.經(jīng)歷探究等腰三角形性質(zhì)的過程,理解等腰三角形的性質(zhì)的證明; 3.掌握等腰三角形的性質(zhì),能運用等腰三角形的性質(zhì)解決生活中簡單的實際問題。 數(shù)學思考: 1.經(jīng)歷“觀察?實驗?猜想?論證”的過程,發(fā)展學生幾何直觀; 2.經(jīng)歷證明等腰三角形的性質(zhì)的過程,體會證明的必要性,發(fā)展合情推理能力和初步的演繹推理能力. 解決問題: 1.能運用等腰三角形的性質(zhì)解決生活中的實際問題,發(fā)展數(shù)學的應用能力,獲得解決問題的經(jīng)驗; 2.在小組活動和探究過程中,學會與人合作,體會與他人合作的重要性. 情感態(tài)度: 1.經(jīng)歷“觀察?實驗?猜想?論證”的過程,體驗數(shù)學活動充滿著探究性和創(chuàng)造性,感受證明的必要性、證明過程的嚴謹性以及結(jié)論的`確定性,并有克服困難和運用知識解決問題的成功體驗,建立學好數(shù)學的自信心; 2.經(jīng)歷運用等腰三角形解決實際問題的過程,認識數(shù)學是解決實際問題和進行交流的重要工具,了解數(shù)學對促進社會進步和發(fā)展人類理性精神的作用; 3.在獨立思考的基礎上,通過小組合作,積極參與對數(shù)學問題的討論,敢于發(fā)表自己的觀點,并尊重與理解他人的見解,在交流中獲益. ㈡教學重點: 等腰三角形的性質(zhì)及應用。 ㈢教學難點: 等腰三角形性質(zhì)的證明。 ㈣解析 本堂課是等腰三角形的第一堂課,所以對于本堂課的知識目標的定位,主要考慮如下:1.了解等腰三角形的概念,認識等腰三角形是軸對稱圖形,在本堂課中要達到如下要求:⑴理解等腰三角形的定義,知道等腰三角形的頂角、底角、腰和底邊;⑵知道等腰三角形是軸對稱圖形,它有一條對稱軸,即:頂角角平分線(底邊上的高或底邊上的中線)所在直線; 2.經(jīng)歷探究等腰三角形性質(zhì)的過程,掌握等腰三角形的性質(zhì)的證明,在課堂中讓學生參與等腰三角形性質(zhì)的探索,鼓勵學生用規(guī)范的數(shù)學言語表述證明過程,發(fā)展學生的數(shù)學語言能力和演繹推理能力,引導學生完成對等腰三角形的性質(zhì)的證明; 3.會利用等腰三角形的性質(zhì)解決簡單的實際問題,本堂課要達到以下要求:掌握等腰三角形的性質(zhì),會利用等腰三角形的性質(zhì)解決簡單的實際問題。 三、問題診斷分析 1.在這堂課中,學生可能遇到的第一個困難是等腰三角形性質(zhì)的發(fā)現(xiàn),特別是等腰三角形頂角的角平分線、底邊上的中線、底邊上的高相互重合這一性質(zhì),解決這一問題教師主要借助等腰三角形對稱性的研究,并引導學生理解“重合”這個詞的涵義。 2.這堂課學生可能遇到的第二個問題是證明等腰三角形的性質(zhì),這一問題主要有三個原因:第一學生剛接觸幾何證明不久,對數(shù)學語言表達方式還不熟悉;這一困難,并不是一堂課就能解決的,而要在以后學習中幫助學生增強數(shù)學語言運用的能力,能有條理地、清晰地闡述自己的觀點。在這堂課中我通過等腰三角形性質(zhì)的證明,鼓勵學生運用規(guī)范的數(shù)學語言來表述,使學生數(shù)學語言能力和演繹推理能力得到提升;第二是添加輔助線的問題,這也是學生在證明中的一個難點。要解決這一問題,我借助等腰三角形是軸對稱圖形,通過研究等腰三角形的對稱軸,讓學生理解三種添加輔助線的方法,即作頂角角平分線、底邊上的高或底邊上的中線;第三是證明等腰三角形頂角角平分線、底邊上的中線、底邊上的高互相重合這一性質(zhì),要突破這一難點,我采用先證明等腰三角形兩底角相等這一性質(zhì),為學生搭一個臺階,更好地解決這個難點。 3.這堂課中學生可能遇到的第三個問題是對等腰三角形的性質(zhì)的應用,特別是等腰三角形頂角的角平分線、底邊上的中線、底邊上的高相互重合這一性質(zhì)的應用;所以我在設計 課堂練習時,注重數(shù)學知識與生活實際的聯(lián)系,提高學生數(shù)學學習的興趣,讓學生主動運用數(shù)學知識解決實際問題,并通過練習滲透分類討論、數(shù)形結(jié)合和方程的數(shù)學思想方法,讓學生形成自我的數(shù)學思維和能力,發(fā)展學生應用數(shù)學的意識。 四、教法、學法: 教法: 常言道:“教必有法,教無定法”。所以我針對八年級學生的心理特點和認知能力水平,大膽應用生活中的素材,并作了精心的安排,充分體現(xiàn)數(shù)學是源于實踐又運用于生活。因此,本堂課的教學中,我以學生為主體,讓學生積極思維,勇于探索,主動地獲取知識。同時,采用了現(xiàn)代化教學技術,激發(fā)學生的學習興趣,使整個課堂“活”起來,提高課堂效率。本堂課以生活中的一些例子為中心,讓學生親自嘗試,接受問題的挑戰(zhàn),充分展示自己的觀點和見解,給學生創(chuàng)設一個寬松愉快的學習氛圍,讓學生體驗成功的快樂,為終身學習和發(fā)展打打下堅實的基礎。 本堂課的設計是以課程標準和教材為依據(jù),采用發(fā)現(xiàn)式教學。遵循因材施教的原則,堅持以學生為主體,充分發(fā)揮學生的主觀能動性。教學過程中,注重學生探究能力的培養(yǎng)。還課堂給學生,讓學生去親身體驗知識的產(chǎn)生過程,拓展學生的創(chuàng)造性思維。同時,注意加強對學生的啟發(fā)和引導,鼓勵培養(yǎng)學生大膽猜想,小心求證的科學研究的思想。 學法: 學生都渴望與他人交流,合作探究可使學生感受到合作的重要和團隊的精神力量,增強集體意識,所以本課采用小組合作的學習方式,讓學生遵循“情景問題?實踐探究?證明結(jié)論?解決實際問題”的主線進行學習。讓學生從活動中去觀察、探索、歸納知識,沿著知識發(fā)生,發(fā)展的脈絡,學生經(jīng)過自己親身的實踐活動,形成自己的經(jīng)驗,產(chǎn)生對結(jié)論的感知,實現(xiàn)對知識意義的主動構(gòu)建。這不僅讓學生對所學內(nèi)容留下了深刻的印象,而且能力得到培養(yǎng),素質(zhì)得以提高,充分地調(diào)動學生學習的熱情,讓學生學會自主學習,學會探索問題的方法。 五、教學支持條件分析 在本堂課中,準備利用長方形紙片、剪刀、圓規(guī)和直尺等工具,剪出等腰三角形,利用等腰三角形,通過對折、多媒體動畫演示等方法發(fā)現(xiàn)等腰三角形的性質(zhì),并且借助多媒體信息技術與實際動手操作加強對所學知識的理解和運用。 六、教學基本流程 七、教學過程設計 一、內(nèi)容簡介 本節(jié)課的主題:通過一系列的探究活動,引導學生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式。 關鍵信息: 1、以教材作為出發(fā)點,依據(jù)《數(shù)學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結(jié)論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。 2、用標準的數(shù)學語言得出結(jié)論,使學生感受科學的嚴謹,啟迪學習態(tài)度和方法。 二、學習者分析: 1、在學習本課之前應具備的基本知識和技能: 、偻愴椀亩x。 ②合并同類項法則 、鄱囗検匠艘远囗検椒▌t。 2、學習者對即將學習的內(nèi)容已經(jīng)具備的水平: 在學習完全平方公式之前,學生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結(jié)出公式的應用方法。 三、教學/學習目標及其對應的課程標準: 。ㄒ唬┙虒W目標: 1、經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推力能力。 2、會推導完全平方公式,并能運用公式進行簡單的計算。 。ǘ┲R與技能:經(jīng)歷從具體情境中抽象出符號的過程,認識有理數(shù)、實數(shù)、代數(shù)式、方程、不等式、函數(shù);掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關系和變化規(guī)律,并能運用代數(shù)式、方程、不等式、函數(shù)等進行描述。 (三)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。 。ㄋ模┣楦信c態(tài)度:敢于面對數(shù)學活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學好數(shù)學的自信心;并尊重與理解他人的見解,能從交流中獲益。 四、教育理念和教學方式: 1.教師是學生學習的組織者、促進者、合作者,學生是學習的主人,在教師指導下主動的、富有個性的學習,用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。教學是師生交往、積極互動、共同發(fā)展的過程。當學生迷路的時候,教師不輕易告訴方向,而是引導他怎樣去辨明方向;當學生登山畏懼了的時候,教師不是拖著他走,而是喚起他內(nèi)在的精神動力,鼓勵他不斷向上攀登。 2.采用“問題情景—探究交流—得出結(jié)論—強化訓練”的模式展開教學。 3.教學評價方式: 。1)通過課堂觀察,關注學生在觀察、總結(jié)、訓練等活動中的主動參與程度與合作交流意識,及時給與鼓勵、強化、指導和矯正。 。2)通過判斷和舉例,給學生更多機會,在自然放松的狀態(tài)下,揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學情,調(diào)查教學。 。3)通過課后訪談和作業(yè)分析,及時查漏補缺,確保達到預期的教學效果。 五、教學媒體: 多媒體 六、教學和活動過程: 〈一〉、提出問題 [引入] 同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的關系嗎? (2m+3n)2=_______________,(-2m-3n)2=______________, (2m-3n)2=_______________,(-2m+3n)2=_______________。 〈二〉、分析問題 1.[學生回答] 分組交流、討論 (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2, (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。 (1)原式的特點。 (2)結(jié)果的項數(shù)特點。 。3)三項系數(shù)的特點(特別是符號的特點)。 (4)三項與原多項式中兩個單項式的關系。 2.[學生回答] 總結(jié)完全平方公式的語言描述: 兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍; 兩數(shù)差的'平方,等于它們平方的和,減去它們乘積的兩倍。 3.[學生回答] 完全平方公式的數(shù)學表達式: (a+b)2=a2+2ab+b2; (a-b)2=a2-2ab+b2. 〈三〉、運用公式,解決問題 1.口答:(搶答形式,活躍課堂氣氛,激發(fā)學生的學習積極性) (m+n)2=____________, (m-n)2=_______________, (-m+n)2=____________, (-m-n)2=______________, (a+3)2=______________, (-c+5)2=______________, (-7-a)2=______________, (0.5-a)2=______________. 2.判斷: ()① (a-2b)2= a2-2ab+b2 () ② (2m+n)2= 2m2+4mn+n2 () ③ (-n-3m)2= n2-6mn+9m2 () 、 (5a+0.2b)2= 25a2+5ab+0.4b2 () 、 (5a-0.2b)2= 5a2-5ab+0.04b2 () 、 (-a-2b)2=(a+2b)2 () 、 (2a-4b)2=(4a-2b)2 () 、 (-5m+n)2=(-n+5m)2 3.小試牛刀 、 (x+y)2 =______________; 、 (-y-x)2 =_______________; 、 (2x+3)2 =_____________; 、 (3a-2)2 =_______________; 、 (2x+3y)2 =____________; 、 (4x-5y)2 =______________; 、 (0.5m+n)2 =___________; 、 (a-0.6b)2 =_____________. 〈四〉、學生小結(jié) 你認為完全平方公式在應用過程中,需要注意那些問題? (1) 公式右邊共有3項。 (2) 兩個平方項符號永遠為正。 (3)中間項的符號由等號左邊的兩項符號是否相同決定。 (4)中間項是等號左邊兩項乘積的2倍。 〈五〉、冒險島: 。1)(-3a+2b)2=________________________________ (2)(-7-2m) 2 =__________________________________ 。3)(-0.5m+2n) 2=_______________________________ 。4)(3/5a-1/2b) 2=________________________________ 。5)(mn+3) 2=__________________________________ 。6)(a2b-0.2) 2=_________________________________ (7)(2xy2-3x2y) 2=_______________________________ 。8)(2n3-3m3) 2=________________________________ 〈六〉、學生自我評價 [小結(jié)] 通過本節(jié)課的學習,你有什么收獲和感悟? 本節(jié)課,我們自己通過計算、分析結(jié)果,總結(jié)出了完全平方公式。在知識探索的過程中,同學們積極思考,大膽探索,團結(jié)協(xié)作共同取得了進步。 〈七〉[作業(yè)] p34 隨堂練習 p36 習題 七、課后反思 本節(jié)課雖然算不上課本中的難點,但在整式一章中是個重點。它是多項式乘法特殊形式下的一種簡便運算。學生需要熟練掌握公式兩種形式的使用方法,以提高運算速度。授課過程中,應注重讓學生總結(jié)公式等號兩邊的特點,讓學生用語言表達公式的內(nèi)容,由于語言缺陷的原因,這一點對聾生來說比較困難,讓學生說明運用公式過程中容易出現(xiàn)的問題和特別注意的細節(jié)。然后再通過逐層深入的練習,鞏固完全平方公式兩種形式的應用,為完全平方公式第二節(jié)課的實際應用和提高應用做好充分的準備。 1 . 教學內(nèi)容精心組織,容量恰當,重點突出,體現(xiàn)內(nèi)容的有效性、系統(tǒng)性和有序性; 2 . 重視啟發(fā),活躍思維,方式、方法多樣,選擇適當;教學環(huán)節(jié)緊湊、合理; 3 . 教學媒體使用適時、適量、適度、有效。 4 . 教學結(jié)構(gòu)組合優(yōu)化,優(yōu)質(zhì)高效。 課題 正比例函數(shù) 一 教學目標 1.通過案例理解正比例函數(shù),能列出正比例函數(shù)關系式 2.教會學生應用正比例函數(shù)解決生活實際問題的能力 二 教學重點 理解正比例函數(shù)的概念 三 教學難點 利用正比例函數(shù)解決生活實際問題 四 教學過程 【提出問題】 《阿甘正傳》是一部勵志影片。片中阿甘曾跑步繞美國數(shù)圈,假設他從德州到加州行進了21000千米,耗費了他150天時間。 。1) 阿甘大約平均每天跑步多少千米? (2) 阿甘的行程y(km)與時間x(天)之間有什么關系? 。3) 阿甘一個月(30天)的行程是多少千米? 【生】 列算式回答 【師】 點評總結(jié) 2.寫出下列變量間的函數(shù)表達式 。1) 正方形的周長l和半徑r之間的關系 【進一步抽象問題讓學生思考】 (2) 大米每千克四元,則售價y元與數(shù)量x(kg)的函數(shù)關系式是什么? 。3) 下列函數(shù)關系式有什么共同點?(小組合作) 【分析共同點和不同點,找出規(guī)律】 (1) y=200x (2) l=2∏r (3) m=7.8V 【生回答,師點評】 【引入新課】 1.正比例函數(shù)的概念: 一般地,形如y=kx (k≠0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù).【板書概念,引導學生分析正比例函數(shù)的定義】 2 【例題講解】 例1 在同一坐標系里,畫出下列函數(shù)的圖像: y=0.5x y=x y=3x 解: 【略】 【掌握函數(shù)圖像的畫法:列表,描點,連線】 3.練習 (1)已知正比例函數(shù)y=kx.當 x=3 時 y=6 。求 k的值 (2) 一種筆記本每本的單價為3元。則銷售金額y元與銷售量x之間的關系式是怎樣的'? 當銷售金額為360元時,則售出了多少本這種筆記本? 四 小結(jié) 五 課外作業(yè) 【反思】 由于函數(shù)的概念比較抽象,學生不容易理解。而理解函數(shù)的概念是教學的重點。這節(jié)課首先通過實例,回顧函數(shù)的概念,其次抽象提出正比例函數(shù)關系式,由學生觀察得到特點,然后引出正比例函數(shù)的概念和特點,再通過練習加以鞏固,最后通過小組討論利用正比例函數(shù)解決生活中的問題。 一、內(nèi)容和內(nèi)容解析 。ㄒ唬﹥(nèi)容 概念:不等式、不等式的解、不等式的解集、解不等式以及能在數(shù)軸上表示簡單不等式的解集. 。ǘ﹥(nèi)容解析 現(xiàn)實生活中存在大量的相等關系,也存在大量的不等關系.本節(jié)課從生活實際出發(fā)導入常見行程問題的不等關系,使學生充分認識到學習不等式的重要性和必然性,激發(fā)他們的求知欲望.再通過對實例的進一步深入分析與探索,引出不等式、不等式的解、不等式的解集以及解不等式幾個概念.前面學過方程、方程的解、解方程的概念.通過類比教學、不等式、不等式的解、解不等式幾個概念不難理解.但是對于初學者而言,不等式的解集的理解就有一定的難度.因此教材又進行數(shù)形結(jié)合,用數(shù)軸來表示不等式的解集,這樣直觀形象的表示不等式的解集,對理解不等式的解集有很大的幫助.基于以上分析,可以確定本節(jié)課的教學重點是:正確理解不等式、不等式的解與解集的意義,把不等式的解集正確地表示在數(shù)軸上. 二、目標和目標解析 。ㄒ唬┙虒W目標 1.理解不等式的概念 2.理解不等式的解與解集的意義,理解它們的區(qū)別與聯(lián)系3.了解解不等式的概念 4.用數(shù)軸來表示簡單不等式的解集 (二)目標解析 1.達成目標1的`標志是:能正確區(qū)別不等式、等式以及代數(shù)式. 2.達成目標2的標志是:能理解不等式的解是解集中的某一個元素,而解集是所有解組成的一個集合. 3.達成目標3的標志是:理解解不等式是求不等式解集的一個過程. 4、達成目標4的標志是:用數(shù)軸表示不等式的解集是數(shù)形結(jié)合的又一個重要體現(xiàn),也是學習不等式的一種重要工具.操作時,要掌握好“兩定”:一是定界點,一般在數(shù)軸上只標出原點和界點即可,邊界點含于解集中用實心圓點,或者用空心圓點;二是定方向,小于向左,大于向右. 三、教學問題診斷分析 本節(jié)課實質(zhì)是一節(jié)概念課,對于不等式、不等式的解以及解不等式可通過類比方程、方程的解、解方程類比教學,學生不難理解,但是對不等式的解集的理解就有一定的難度. 因此,本節(jié)課的教學難點是:理解不等式解集的意義以及在數(shù)軸上正確表示不等式的解集. 四、教學支持條件分析 利用多媒體直觀演示課前引入問題,激發(fā)學生的學習興趣. 五、教學過程設計 (一)動畫演示情景激趣多媒體演示:兩個體重相同的孩子正在蹺蹺板上做游戲,現(xiàn)在換了一個大人上去,蹺蹺板發(fā)生了傾斜,游戲無法繼續(xù)進行下去了,這是什么原因呢?設計意圖:通過實例創(chuàng)設情境,從“等”過渡到“不等”,培養(yǎng)學生的觀察能力,分析能力,激發(fā)他們的學習興趣. 。ǘ┝⒆銓嶋H引出新知 問題一輛勻速行駛的汽車在11︰20距離a地50km,要在12︰00之前駛過a地,車速應滿足什么條件? 小組討論,合作交流,然后小組反饋交流結(jié)果.最后,老師將小組反饋意見進行整理(學生沒有討論出來的思路老師進行補充) 1.從時間方面慮:2.從行程方面:<>50 3.從速度方面考慮:x>50÷ 設計意圖:培養(yǎng)學生合作、交流的意識習慣,使他們積極參與問題的討論,并敢于發(fā)表自己的見解.老師對問題解決方法的梳理與補充,發(fā)散學生思維,培養(yǎng)學生分析問題、解決問題的能力. 。ㄈ┚o扣問題概念辨析 1.不等式 設問1:什么是不等式? 設問2:能否舉例說明?由學生自學,老師可作適當補充.比如:是不等式. 2.不等式的解 設問1:什么是不等式的解?設問2:不等式的解是唯一的嗎?由學生自學再討論. 老師點撥:由x>50÷得x>75說明x任意取一個大于75的數(shù)都是不等式 3.不等式的解集 設問1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都設問2:不等式的解集與不等式的解有什么區(qū)別與聯(lián)系?由學生自學后再小組合作交流. 老師點撥:不等式的解是不等式解集中的一個元素,而不等式的解集是不等式所有解組成的一個集合. 4.解不等式 設問1:什么是解不等式?由學生回答. 老師強調(diào):解不等式是一個過程. 設計意圖:培養(yǎng)學生的自學能力,進一步培養(yǎng)學生合作交流的意識.遵循學生的認知規(guī)律,有意識、有計劃、有條理地設計一些問題,可以讓學生始終處于積極的思維狀態(tài),不知不覺中接受了新知識.老師再適當點撥,加深理解. (四)數(shù)形結(jié)合,深化認識 問題1:由上可知,x>75既是不等式的解集.那么在數(shù)軸上如何表示x>75呢?問題2:如果在數(shù)軸上表示x≤ 75,又如何表示呢?由老師講解,注意規(guī)范性,準確性.老師適當補充:“≥”與“≤”的意義,并強調(diào)用“≥”或“≤”連接的式子也是不等式.比如x≤ 75就是不等式. 設計意圖:通過數(shù)軸的直觀讓學生對不等式的解集進一步加深理解,滲透數(shù)形結(jié)合思想. (五)歸納小結(jié),反思提高教師與學生一起回顧本節(jié)課所學主要內(nèi)容,并請學生回答如下問題 1、什么是不等式?<的解集,也是不等式>50 2、什么是不等式的解? 3、什么是不等式的解集,它與不等式的解有什么區(qū)別與聯(lián)系? 4、用數(shù)軸表示不等式的解集要注意哪些方面? 設計意圖:歸納本節(jié)課的主要內(nèi)容,交流心得,不斷積累學習經(jīng)驗. 。┎贾米鳂I(yè),課外反饋 教科書第119頁第1題,第120頁第2,3題. 設計意圖:通過課后作業(yè),教師及時了解學生對本節(jié)課知識的掌握情況,以便對教學進度和方法進行適當?shù)恼{(diào)整. 六、目標檢測設計 1.填空 下列式子中屬于不等式的有___________________________ ①x +7> 、趚≥ y + 2 = 0 、 5x + 7 設計意圖:讓學生正確區(qū)分不等式、等式與代數(shù)式,進一步鞏固不等式的概念. 2.用不等式表示 、 a與5的和小于7 、 a的與b的3倍的和是非負數(shù) 、壅叫蔚倪呴L為xcm,它的周長不超過160cm,求x滿足的條件設計意圖:培養(yǎng)學生審題能力,既要正確抓住題目中的關鍵詞,如“大于(小于)、非負數(shù)(正數(shù)或負數(shù))、不超過(不低于)”等等,正確選擇不等號,又要注意實際問題中的數(shù)量的實際意義. 一、教學目標: 1.理解二元一次方程及二元一次方程的解的概念; 2.學會求出某二元一次方程的幾個解和檢驗某對數(shù)值是否為二元一次方程的解; 3.學會把二元一次方程中的一個未知數(shù)用另一個未知數(shù)的一次式來表示; 4.在解決問題的過程中,滲透類比的思想方法,并滲透德育教育. 二、教學重點、難點: 重點:二元一次方程的意義及二元一次方程的解的概念. 難點:把一個二元一次方程變形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的方程. 三、教學方法與教學手段: 通過與一元一次方程的比較,加強學生的類比的思想方法; 通過“合作學習”,使學生認識數(shù)學是根據(jù)實際的需要而產(chǎn)生發(fā)展的觀點. 四、教學過程: 1.情景導入: 新聞鏈接:桐鄉(xiāng)70歲以上老人可領取生活補助, 得到方程:80a+150b=902 880. 2.新課教學: 引導學生觀察方程80a+150b=902 880與一元一次方程有異同? 得出二元一次方程的概念:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1次的方程叫做二元一次方程. 做一做: 。1)根據(jù)題意列出方程: 、傩∶魅タ赐棠,買了5 kg蘋果和3 kg梨共花去23元,分別求蘋果和梨的單價.設蘋果的單價x元/kg , 梨的單價y元/kg ; 、谠诟咚俟飞,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米,如果設轎車的速度是a千米/小時,卡車的速度是b千米/小時,可得方程: . (2)課本P80練習2. 判定哪些式子是二元一次方程方程. 合作學習: 活動背景愛心滿人間——記求是中學“學雷鋒、關愛老人”志愿者活動. 問題:參加活動的36名志愿者,分為勞動組和文藝組,其中勞動組每組3人,文藝組每組6人. 團支書擬安排8個勞動組,2個文藝組,單從人數(shù)上考慮,此方案是否可行? 為什么? 把x=8,y=2代入二元一次方程3x+6y=36,看看左右兩邊有沒有相等? 由學生檢驗得出代入方程后,能使方程兩邊相等. 得出二元一次方程的解的概念:使二元一次方程兩邊的值相等的一對未知數(shù)的值叫做二元一次方程的一個解. 并提出注意二元一次方程解的書寫方法. 3.合作學習: 給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數(shù))的值,女同學馬上給出對應的x的值; 接下來男女同學互換.(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法.提問:給出x的值,計算y的值時,y的系數(shù)為多少時,計算y最為簡便? 出示例題:已知二元一次方程 x+2y=8. 。1)用關于y的代數(shù)式表示x; 。2)用關于x的代數(shù)式表示y; (3)求當x= 2,0,-3時,對應的y的值,并寫出方程x+2y=8的三個解. 。ó斢煤瑇的一次式來表示y后,再請同學做游戲,讓同學體會一下計算的`速度是否要快) 4.課堂練習: (1)已知:5xm-2yn=4是二元一次方程,則m+n=; (2)二元一次方程2x-y=3中,方程可變形為y= 當x=2時,y= ; 5.你能解決嗎? 小紅到郵局給遠在農(nóng)村的爺爺寄掛號信,需要郵資3元8角.小紅有票額為6角和8角的郵票若干張,問各需要多少張這兩種面額的郵票?說說你的方案. 6.課堂小結(jié): (1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式); (2)二元一次方程解的不定性和相關性; (3)會把二元一次方程化為用一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式. 7.布置作業(yè):(1)教材P82; (2)作業(yè)本. 教學設計意圖: 依照課程標準,通過分析教材中教學情境設計和例習題安排的意圖,在此基礎上依據(jù)學生實際,制訂了本堂課的教學目標,教學重點和難點,課堂教學的設計始終圍繞這教學重點和難點展開. 在充分理解教材編寫意圖、教學要求和教學理念的基礎上,根據(jù)學生實際,從學生的已有經(jīng)驗出發(fā),創(chuàng)設了教學情境:關心老人,突出情感主線,并貫穿整個教學. 并對教學 內(nèi)容進行適當?shù)闹亟M、補充和加工等,創(chuàng)造性地使用了教材. 所選擇的例習題都體現(xiàn)實際問題數(shù)學化的思想,讓學生感受到數(shù)學的魅力. 這兩個方面的設計貫穿整堂課,把知識內(nèi)容和情感體驗自然連貫起來. 其次,在教學過程設計中,體現(xiàn)了讓學生展示解決問題的思維過程,通過幾個合作學習,激發(fā)學生主動去接觸問題,從而達到解決問題的目的. 重視學生學習過程中的自我評價和生生間的相互評價,關注學生對解題思路回顧能力的培養(yǎng). 二元一次方程概念的教學中,通過與一元一次方程的類比的方法,使得學生加深印象. 在突破難點的設計上,通過游戲的形式激發(fā)學生的學習興趣,并在選題時,通過降低例題的難度,使學生迅速掌握用關于一個未知數(shù)的代數(shù)式表示另一個字母的方法,體會運用這種方法的可使求二元一次方程求解更簡便. 在教學過程中,很多教師總認為自己在上課中講得井井有條,知識條理十分透徹,演算透徹清晰,但結(jié)果是有大多數(shù)學生不能舉一反三,數(shù)學學習困難重重。產(chǎn)生這種現(xiàn)象的原因,多數(shù)教師都歸因于學生素質(zhì)差、家庭教育環(huán)境不良等教師以外的因素,很少發(fā)現(xiàn)是自己教學能力和素養(yǎng)導致而成。 課堂教學是師生的雙邊活動。課堂教學的實質(zhì)是師生雙方的信息交流,共同學校的過程。教師得知學生在數(shù)學學習很困難時,是否想到了可能教師自己對教材理解不夠,沒有準確地把握教材的重點、難點,對教材內(nèi)容層次沒有理清和教學方法不適呢?《數(shù)學課程標準》指導下,我們的數(shù)學教學目的是要學生在數(shù)學學習中,由“聽”到“懂”,再到“會”,最后到“通”。為此,教師必須深刻反思自己的教育教學行為,批判性地考察自我主體行為表現(xiàn)及其行為依據(jù)。通過觀察、回顧、診斷、自我監(jiān)控等方式,或給予肯定、支持與強化,或給予否定、思索與修正,將“學會教學”與“學會學習”結(jié)合起來,從而努力提升教學實踐的合理性,提高課堂教學效能,到達提高教學質(zhì)量的目的,F(xiàn)就以下幾方面談談自己的看法。 一、教師要反思教育觀念 新課標下要求教師要改變學科的教育觀,始終體現(xiàn)“學生是教學活動的主體”科學理念,著眼于學生的終身發(fā)展,注重培養(yǎng)學生濃厚的學習興趣和正確的學習習慣。數(shù)學非常重視教學內(nèi)容與實際生活的`緊密聯(lián)系。但是在教學活動中還是有不少教師習慣于傳統(tǒng)的教學模式,偏重于知識的傳授,強調(diào)接受式學習,這樣使很多學生在學習數(shù)學上失去了興趣。教學中教師要抓住時機,不斷地引導學生在設疑、質(zhì)疑、解疑的過程中,創(chuàng)設認知“沖突”,激發(fā)學生持續(xù)的學習興趣和求知欲望,順利地建立數(shù)學概念,把握數(shù)學定義、定理和規(guī)律。 教師在探究教學中要立足與培養(yǎng)學生的獨立性和自主性,引導他們質(zhì)疑、調(diào)查和探究,學會在實踐中學,在合作中學,逐步形成適合于自己的學習策略。例如,在學習等腰三角形三線合一的性質(zhì)時可以讓三個同學合作分別去畫出頂角平分線、底邊上的高、底邊上的中線,這是學生會發(fā)現(xiàn)三條線為什么會是一條線?證明三角形全等的方法有多種,為什么 “角邊邊”不能判定兩三角形全等?在學習鑲嵌時,可以提這樣的問題,為什么正三角形、正方形、長方形正六邊形可以,而正五邊形不可以?等等。 這樣教師不斷地設問,不斷地質(zhì)疑,就能引導學生進行積極思考,激發(fā)起學生濃厚的學習興趣和求知欲望,促使學生在生活中發(fā)現(xiàn)和歸納各種各樣的數(shù)學規(guī)律,為下一步學習數(shù)學知識打下堅實的基礎。所以我們的教師必須反思自己的教育觀念,緊緊抓住主導和主體的關系,解決好學生學習積極性的問題。 二、教師要反思教學設計 教學設計是課堂教學的藍本,是對課堂教學的整體規(guī)劃和預設,勾勒出了課堂教學活動的效益取向。設計教學方案時,教師對當前的教學內(nèi)容及其地位(概念的“解構(gòu)”、思想方法的“析出”、相關知識的聯(lián)系方式等),學生已有知識經(jīng)驗,教學目的,重點與難點,如何依據(jù)學生已有認知水平和知識的邏輯過程設計教學過程,如何突出重點和突破難點,學生在理解概念和思想方法時可能會出現(xiàn)哪些情況以及如何處理這些情況,設計哪些練習以鞏固新知識,如何評價學生的學習效果等,都應該有一定的思考和預設。教學設計的反思就是對這些思考和預設是否考慮到 了。教學后,要對實際進程和學生的接受程度進行比較和反思,找出成功和不足之處及其原因,從而有效地改進教學。 三、教師要反思教學方法 教師教得好,本質(zhì)上講是學生學得好。在實際教學過程中我們的教學方法是否合乎學生實際呢?上課、評卷、答疑解難時,有的教師自以為講清楚明白了,學生受到了一定的啟發(fā),但反思后發(fā)現(xiàn),教師的講解并沒有很好地從學生原有的知識基礎出發(fā),從根本上解決學生認識上鴻溝問題。有的教師只是一味的設想按照自己某個固定的程序去解決某一類問題,也許學生當時聽明白了,但往往是是而非,并沒有真正理解問題的本質(zhì)。 初中數(shù)學教學中,例習題教學是數(shù)學教學中重要的組成部分,是概念類教學的延伸和發(fā)展。教材中的例習題都是編者精心編制的,具有典型性和啟發(fā)性,它們不僅是對基礎知識的鞏固,同時對培養(yǎng)學生智力、掌握數(shù)學思想和方法,及培養(yǎng)學生應用數(shù)學意識和能力,提高學生的數(shù)學素養(yǎng)等都有重要意義。 四、教師要反思學生學習方法 《數(shù)學課程標準》指出,有效的數(shù)學學習活動不能單純依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數(shù)學的重要方式,因此,轉(zhuǎn)變數(shù)學學習方式,倡導有意義的學習方式是課程改革的核心任務。初中學生年齡一般在十二至十六歲之間,正處生長發(fā)育期,思想不成熟,行為不穩(wěn)定,辦事情緒化,喜表露,易沖動, 既有面見師長的羞澀, 有初生牛犢不怕虎的習性。在數(shù)學學習上憑興趣,看心情,個性反映較為突出,有不少學生學習方法也存在一定的問題。同時他們往往又很難發(fā)現(xiàn)自己的學習方法不妥。所以,教師就應該反思學生的學習方法,找一找哪些問題,并幫助他們努力改變不恰當?shù)姆椒,使學生達到《新課標》的要求。 總之,為學之道,必本與思,思則得之,不思則不得。教學也是這個規(guī)律,只教不思就會成為教死書的教書匠,學生也得不到很好的受益。要想成為優(yōu)秀的教師,只有一邊教書一邊總結(jié),一邊教書一邊反思,才能實現(xiàn)自己的目的。 教學目標 1、知識與技能: (1)理解一元一次不等式組及其解集的意義; 。2)掌握一元一次不等式組的解法。 2、過程與方法: (1)經(jīng)歷通過具體問題抽象出不等式組的過程,培養(yǎng)學生逐步形成分析問題和解決問題的能力。 (2)經(jīng)歷一元一次不等式組解集的探究過程,培養(yǎng)學生的觀察能力和數(shù)形結(jié)合的思想方法,滲透類比和化歸思想。 3、情感、態(tài)度與價值觀: 。1)感受數(shù)形結(jié)合思想在數(shù)學學習中的作用,養(yǎng)成自主探究的良好學習習慣。 。2)學生在解不等式組的過程中體會用數(shù)學解決問題的直觀美和簡潔美。 2學情分析 本節(jié)討論的對象是一元一次不等式組。幾個一元一次不等式合在一起,就得到一元一次不等式組。從組成成員上看,一元一次不等式組是在一元一次不等式基礎上發(fā)展的新概念;從組成形式上看,一元一次不等式組與第八章學習的方程組有類似之處,都是同時滿足幾個數(shù)量關系,所求的都是集合不等式解集的公共部分或幾個方程的公共解。因此,在本節(jié)教學中應注意前面的基礎,讓學生借助對已學知識的認識學習新知識。 另外,本節(jié)課是在學生學習了一元一次方程、二元一次方程組和一元一次不等式之后的又一次數(shù)學建模思想學習,是今后利用一元一次不等式組解決實際問題的關鍵,是后續(xù)學習一元二次方程、函數(shù)的重要基礎,具有承前啟后的重要作用。另外,在整個學習過程中數(shù)軸起著不可替代的作用,處處滲透著數(shù)形結(jié)合的思想,這種數(shù)形結(jié)合的思想對學生今后學習數(shù)學有著重要的影響。 3重點難點 1、教學重點:對一元一次不等式組解集的認識及其解法。 2、教學難點:對一元一次不等式組解集的認識及確定。 3、教學關鍵:利用數(shù)軸確定不等式組中各個不等式解集的公共部分。 4教學過程4.1第一學時教學活動活動1【導入】溫故知新 教師提問: 1、什么是一元一次不等式? 2、什么是一元一次不等式的解集? 3、如何求一元一次不等式的解集? 針對性練習: 。ㄔO計意圖:檢驗學生是否理解和掌握一元一次不等式的相關概念,為本節(jié)新課內(nèi)容的學習做好鋪墊。同時對解不等式中的相關要點加以強調(diào):①解不等式中,系數(shù)化為1時不等號的方向是否要改變;②在數(shù)軸上表示解集時“實心圓點”和“空心圓圈”的選擇;③要正確理解利用數(shù)軸表示出來的不等式解集的幾何意義。) 活動2【講授】創(chuàng)設問題情景,探索新知 1、問題(課本第127頁):用每分鐘可抽30 t水的抽水機來抽污水管道里積存的污水,估計積存的污水 超過1 200 t而不足1 500 t,那么將污水抽完所用時間的范圍是什么? 。ㄔO計意圖:結(jié)合生活實例,讓學生經(jīng)歷通過具體問題抽象出不等式組的過程,即經(jīng)歷知識的拓展過程,讓學生體會到數(shù)學學習的內(nèi)容是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的。) 2、引導學生找出問題中“積存的污水”需同時滿足的兩個不等關系: 超過1 200 t和不足1 500 t。 3、問題1:如何用數(shù)學式子表示這兩個不等關系? 1)引導學生一起把這個實際問題轉(zhuǎn)換為數(shù)學模型: 滿足一個不等關系我們可列一個不等式,滿足兩個不等關系可以列出兩個不等式。 設用x min將污水抽完,則x需同時滿足以下兩個不等式: 30x>1200, ① 30x<1500 ② 2)教師歸納一元一次不等式組的意義: 由于未知數(shù)x需同時滿足上述兩個不等式,那么類似于方程組,我們把這樣兩個不等式合起來,就組成一個一元一次不等式組。 。ㄔO計意圖:把實際問題轉(zhuǎn)換為數(shù)學模型,同時讓學生根據(jù)一元一次不等式和二元一次方程組的有關概念來類推一元一次不等式組的有關概念,滲透類比和化歸思想。) 4、問題2:怎樣確定不等式組中既滿足不等式①同時又滿足不等式②的x的可取值范圍? 1)教師分析:對于一元一次不等式組來說,組成不等式組的每一個不等式中都只含有一個未知數(shù), 運用前面解一元一次不等式的知識,我們就能直接求出不等式組中的每一個一元一次不等式的解集。 2)得到解不等式組的第一個步驟:分別直接求出這兩個不等式的解集。學生自行求解: 由不等式①,解得x>40 由不等式②,解得x<50 3)教師引導學生根據(jù)題意,容易得到:在這兩個解集中,由于未知數(shù)x既要滿足x>40,也要同時滿足x<50,因此x>40和x<50這兩個解集的公共部分,就是不等式組中x可以取值的范圍。 。ㄔO計意圖:讓學生在教師的引導下探究不等式組的解集及其解法,養(yǎng)成自主探究的良好學習習慣。) 5、問題3:如何求得這兩個解集的公共部分? 學生活動:將不等式①和②的解集在同一條數(shù)軸上分別表示出來。 。ㄔO計意圖:啟發(fā)學生可利用數(shù)軸的直觀性幫助我們尋找這兩個不等式解集的'公共部分。) 教師活動:利用多媒體課件,用三種不同形式表示這兩個解集,幫助學生求得這個公共部分。 (設計意圖:結(jié)合介紹利用數(shù)軸確定公共部分的三種不同形式,突破本節(jié)課的難點,培養(yǎng)學生的觀察能力和數(shù)形結(jié)合的思想方法。) 形式一:用兩種不同顏色表示這兩個解集 1)通過設置以下幾個問題,要求學生通過觀察、分組討論、取值驗證,自主得出結(jié)論。 。1)這兩種顏色把數(shù)軸分成幾個部分? (2)每一個部分分別表示哪些數(shù)? 。3) 請每一小組的同學從這幾個部分中各取2~3個數(shù),分別代入兩個不等式中,同時思考:哪部分的數(shù)既滿足不等式①同時又滿足不等式②? 2)學生通過自主探究、合作交流,得到這3個問題的正確答案。 3)得出結(jié)論: 只有紅色和藍色重疊的部分才既滿足不等式①又同時滿足不等式②。因此,紅色和藍色重疊的部分就是我們要找的x的可取值范圍。 4)教師提問:兩個不等式解集的界點:即實數(shù)40、50所在的點是否落在紅色和藍色重疊的部分?教師引導學生利用學過的驗證法進行驗證,并得出結(jié)論:兩個界點沒有落在紅色和藍色重疊的部分。 (設計意圖:讓學生對一系列的問題進行自主分析和解答,充分調(diào)動學生學習的主動性和積極性。同時在上述過程中,利用不同顏色的直觀性,目的在于能讓學生更清楚地找出不等式①和不等式②解集的公共部分。) 形式二:利用畫斜線的方式:用兩種不同方向的斜線分別畫出x>40和x<50這兩個部分的解集。 類似地,引導學生得出結(jié)論:兩個解集的公共部分,就是圖中兩種不同方向斜線重疊的部分,從而得出結(jié)論。 形式三:結(jié)合課本,利用兩條橫線都經(jīng)過的部分來確定兩個解集的公共部分。 。ㄔO計意圖:介紹不同的形式,讓學生再一次鮮明、直觀地體會:x的可取值范圍是兩個不等式解集的公共部分;進一步培養(yǎng)學生的觀察能力和數(shù)形結(jié)合的思想方法。) 6、問題4:如何表示這個可取值范圍? 教師分析:在數(shù)軸上,未知數(shù)x落在實數(shù)40和50之間。而我們知道,數(shù)軸上的實數(shù),它們從左到右的順序,就是從小到大的順序。因此,我們可將這三個數(shù)先按從小到大的順序書寫出來,再用小于號依次進行連接,記為40 7、小結(jié)并解決課本問題:原不等式組中x的取值范圍為40 。ㄔO計意圖:首尾呼應,完成了實際問題的研究,通過這個研究過程,讓學生進行感悟、歸納、領會知識的真諦。) 8、同時,類比一元一次不等式解集的幾何意義,教師再次進行歸納: 在數(shù)軸上,若在40 一般地,幾個不等式的解集的公共部分,叫做由它們所組成的不等式組的解集。解不等式組就是求它的解集。 9、結(jié)合上述學習過程,讓學生和教師一起歸納解一元一次不等式組的步驟: 。1)分別求出不等式組中各個不等式的解集; 。2)把這些解集分別在同一條數(shù)軸上表示出來; 。3)確定各個不等式解集的公共部分; 。4)寫出不等式組的解集。 。ㄔO計意圖:及時進行小結(jié),使學生對所學知識更加的系統(tǒng)化。) 【初中數(shù)學教學設計】相關文章: 初中數(shù)學教學設計11-08 初中數(shù)學教學設計(精選)07-09 初中數(shù)學教學設計05-22 初中數(shù)學優(yōu)秀教學設計02-17 初中數(shù)學優(yōu)秀教學設計07-11 初中數(shù)學教學設計[精華]07-21 初中數(shù)學教學設計15篇12-15 初中數(shù)學教學設計(15篇)12-16 初中數(shù)學教學設計集合15篇12-19 (精品)初中數(shù)學教學設計15篇10-10初中數(shù)學教學設計5
初中數(shù)學教學設計6
初中數(shù)學教學設計7
初中數(shù)學教學設計8
初中數(shù)學教學設計9
初中數(shù)學教學設計10
初中數(shù)學教學設計11
初中數(shù)學教學設計12
初中數(shù)學教學設計13
初中數(shù)學教學設計14
初中數(shù)學教學設計15