- 乘法分配律教學反思 推薦度:
- 乘法分配律教學反思 推薦度:
- 乘法分配律教學反思 推薦度:
- 相關(guān)推薦
《乘法分配律》教學反思
身為一名優(yōu)秀的人民教師,我們需要很強的教學能力,通過教學反思可以有效提升自己的教學能力,教學反思我們應該怎么寫呢?以下是小編精心整理的《乘法分配律》教學反思,歡迎大家借鑒與參考,希望對大家有所幫助。

《乘法分配律》教學反思1
“乘法分配律”這堂課的主要教學目標包括:知識目標:從學生已有的生活經(jīng)驗出發(fā),通過觀察、類比、歸納、驗證、運用等方法理解和掌握乘法分配律(含字母表達式),并能正確地表述。能力目標:通過讓學生參與知識的形成過程,培養(yǎng)學生概括、分析、推理的能力,并滲透“從特殊到一般,再由一般到特殊”的認識事物的方法,提高數(shù)學的應用意識。情感目標:在學習過程中培養(yǎng)學生對數(shù)學現(xiàn)象的`好奇心及主動探究的精神。從實際教學的情況來看,我自己認為已基本達到了我課前所設定的目標,教學效果還是良好的。
我覺得比較成功的地方有:
1.利用學生已經(jīng)掌握的知識進行遷移,從學生比較熟悉的生活實際問題引入,學生較易接受與理解
2.能夠根據(jù)班級學生的實際情況,發(fā)揮好教師的引導與啟發(fā)作用,讓他們能在教師的提示、指導下,漸漸發(fā)現(xiàn)了幾組算式之間存在著的聯(lián)系,找到規(guī)律,再通過舉例,驗證自己所找到的規(guī)律,并且再啟發(fā)他們說出了乘法分配律的字母表達式,培養(yǎng)了學生觀察、思考、分析的能力。
3.在教學過程中,既讓學生有獨立觀察、思考、練習的機會,又安排了小組討論,讓每個同學都有發(fā)言的機會,讓全體學生的學習愿望都能得到滿足。因此,這堂課學生參與的積極性比較高,課堂氣氛比較活躍,從學生的練習反饋情況來看,對這個內(nèi)容掌握較好。
我認為不足的地方在于:我在面向全體方面做的還不夠,個別不愛發(fā)言的同學表現(xiàn)自己的機會少,生活型的乘法分配律的題型練習量不夠,這也是我在以后教學當中應該改進的地方。
《乘法分配律》教學反思2
我對教材內(nèi)容、學情進行了認真的分析之后,確定了教學目標:通過小組合作探索乘法分配律的活動,進一步體驗探索規(guī)律的過程,并能用字母表示;經(jīng)歷共同探索的過程,培養(yǎng)解決實際問題和數(shù)學交流的能力;會用乘法分配律進行一些簡便計算。通過學生自主研究、小組討論、全班交流以及講學練相結(jié)合,設計相應的練習題,逐步理解抽象的乘法分配律。
通過教研組全體老師的努力,我們設計了比較合理的前置性小研究。
在本節(jié)課的教學過程中,學生通過對“前置性小研究”的探索研究,能會用兩種方法去解決同一問題,并且能講出自己的思路;能夠觀察出并說出兩道算式的特點,能夠觀察出兩道算式的結(jié)果是相同的;能夠按照算式的特點進行舉例;能夠自己說出規(guī)律,總結(jié)規(guī)律;能夠用求結(jié)果和乘法的意義去驗證這條規(guī)律的正確性、普遍性;能夠運用乘法分配律解決實際的問題,在做題的'同時感受乘法分配律給計算帶來的方便。
當然,本節(jié)課的教育教學過程,也是有不足的地方。我認為:
1、教師在施教的過程中,經(jīng)常性的打斷學生的發(fā)言。其實這是很不好的習慣。課下陳靖嫣對我說:“老師,你一打斷我,我就不知道怎么說了!蔽易约阂惨庾R到了這個問題。我覺得在“生本課堂”中教師,應該有這樣一種意識,那就是“等”的意識。等學生表達完他的所有想法之后,他們在遇到“瓶頸”的時候,老師可以經(jīng)過有智慧的引導,幫助他們度過“難過”?墒俏覀兒芏鄷r候,經(jīng)常犯的錯誤是,學生只要一有點小問題,老師馬上就出馬,這樣是極不好的做法。像本次課中,我有好幾次打斷了陳靖嫣同學的匯報,也打斷了王孟陽同學的匯報,還有好幾次打斷了同學們的交流活動。
對于這種打斷可能在心里帶著很僥幸的心理,認為我必須在規(guī)定的時間完成某些教學任務,不能讓本節(jié)課“節(jié)外生枝”。可是,這種心理違背了“生本課堂”的基本教學理念。
2、教師在引導的過程中,不能照顧到學生的想法。像:徐昊同學和李厚杰同學在課堂上,表達了自己的想法?墒俏以谑┙痰倪^程中,沒有給予足夠的重視?赡軐τ诒竟(jié)課的教學,他們的想法,是在浪費時間?墒,我的這種做法,卻不能照顧到他們的后續(xù)發(fā)展。我覺得在處理這個事件的時候,我應該既不能讓本節(jié)課“跑偏”,也不能澆滅他們的“興趣之火”。這是需要有一定的教育智慧的。
3、我覺得學生們的交流是不夠熱烈的。根本的原因是:學生們的研究不夠到位,不會提出自己的疑問,不能對自己的疑問進行探索研究。我覺得這都是老師在平時教學中,沒有給予足夠的指導的原因。
還有很多的問題,也許是我沒有意識到的。
結(jié)合本節(jié)課,關(guān)于生本課堂我有了很多的想法。
我認為真正的“生本課堂”是這樣的:
教師在教學設計、教學過程等各個環(huán)節(jié),能體現(xiàn)學生的主體地位,從細節(jié)去體現(xiàn)。也是一種和諧的教育氛圍。教師和學生可以圍繞一個問題據(jù)理力爭,也可以在一節(jié)課中,實現(xiàn)多個知識點的“串聯(lián)”,也可能好幾節(jié)課我們突破不了一個知識點的講解。教師千萬要改變原先“計件工作”的模式,我們還原教育本來的色彩。它應該是自然的,富有詩情畫意的。我們身在其中,師生應該一起去營造一種氛圍,體會教育給我們帶來的幸和充實感。
我立志讓我的課堂,成為我們幸福的源泉。
《乘法分配律》教學反思3
乘法分配律是人教版四年級數(shù)學下冊的內(nèi)容,是一節(jié)比較抽象的概念課,是在學生學習了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎上教學的。乘法分配律也是學習這幾個定律中的難點。因此,對于乘法分配律的教學,我沒有把重點放在數(shù)學語言的表達上,而是把重點放在讓學生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證。
所以,本課的教學目標,我定位在:
。1)從學生已有生活經(jīng)驗出發(fā),通過觀察、類比、歸納、驗證、運用等方法深化和豐富對乘法分配律的認識。
(2)滲透“由特殊到一般,再由一般到特殊”的認識事物的方法,培養(yǎng)學生獨立自主、主動探索、發(fā)現(xiàn)問題,解決問題的能力,提高數(shù)學的應用意識。
本單元教材的一個鮮明特點是,不再僅僅給出一些數(shù)值計算的實例,讓學生通過計算,發(fā)現(xiàn)規(guī)律,而是結(jié)合學生熟悉的問題情境,幫助學生體會運算定律的現(xiàn)實背景。這樣便于學生依托已有的知識經(jīng)驗,分析比較不同的解決問題的方法,引出運算定律。
教材提供了這樣一個主體圖:春季里,同學們開展植樹活動,一共有25個小組,每組里4人負責挖坑、種樹,2人負責抬水、澆樹。需要解決的問題是:一共有多少人參加植樹活動?學生會用兩種不同的方法分別列出算式,接著通過計算發(fā)現(xiàn),兩個算式可以用“=”連接,即25×(4+2)=25×4+25×2。我將其首先呈現(xiàn)給學生,目的是結(jié)合學生熟悉的問題情境,幫助學生體會運算定律的現(xiàn)實背景。
接著設計“懸念”,拋出四組題目,把學生引到“兩算式的結(jié)果相等”的.情況中來。先請學生猜想,而后驗證,再請學生編題,讓每一個學生都不由自主地參與到研究中來。在編題過程中,很多學生都交出了正確的“答卷”,增強了他們學習的自信心和繼續(xù)研究的欲望。接著,請同學在生活中尋找驗證的方法,以四人小組為研究單位,學生的思維活動一下子活躍起來,紛紛探究其中的奧秘。小組討論的方式,更促使學生之間進行思維交流,激發(fā)學生希望獲得成功的動機。
通過實踐、討論,揭示了乘法分配律。再通過用自己喜歡的方式來表述乘法分配律加以內(nèi)化。這樣做,學生學得積極、學得主動、學得快樂,自己動手編題、自己動腦探索,從數(shù)量關(guān)系變化的多次類比中悟出規(guī)律,“扶”得少,學生創(chuàng)造得多,學生學會的不僅僅是一條規(guī)律,更重要的是,學生學會了自主自動,學會了進行合作,學會了獨立思考,學會了像數(shù)學家一樣進行研究、發(fā)現(xiàn)!這對十歲左右的孩子來說,其激勵作用無疑是無比巨大的,而“愛思、多思、會思”的學習習慣,會讓孩子一生受益。縱觀教學過程,學生學得輕松,學得主動。
我通過這節(jié)課的教學感受到:認真鉆研教材,深入挖掘教材中的寶貴資源,會使教材的內(nèi)涵更有廣度和深度,也為培養(yǎng)和發(fā)展學生思維的靈活性,提供了更廣闊的空間。
《乘法分配律》教學反思4
《乘法分配律》是本章的難點,它不是單一的乘法運算,還涉及到加法運算。教材對于這部分內(nèi)容的處理方法與前面講乘法結(jié)合律的方法類似。在設計本教案的過程中,我一直抱著“以學生發(fā)展為本”的宗旨,試圖尋找一種在完成共同的學習任務、參與共同的學習活動過程中實現(xiàn)不同的人的數(shù)學水平得到不同發(fā)展的教學方式。結(jié)合自己所教案例,對本節(jié)課教學策略進行以下幾點簡要分析:
一、教師要深入了解各層次學生思維實際,提供充分的信息,為各層次學生參與探索學習活動創(chuàng)造條件,沒有學生主體的'主動參與,不會有學生主體的主動發(fā)展,教師若不了解學生實際,一下子把學習目標定得很高,勢必會造成部分學生高不可攀而坐等觀望,失去信心浪費寶貴的學習時間。以往教學該課時都是以計算引入,有復習舊知,也有比一比誰的計算能力強開場。我想是不是可以拋開計算,帶著愉快的心情進課堂,因此,我在一開始設計了一個購物的情境,讓學生在一個寬松愉悅的環(huán)境中,走進生活,開始學習新知。這樣所設的起點較低,學生比較容易接受。
二、讓學生根據(jù)自己的愛好,選擇自己喜歡的書,出來的算式就比較開放。學生能自由發(fā)揮,對所學內(nèi)容很感興趣,氣氛熱烈。由學生計算總價列式,到通過計算發(fā)現(xiàn)兩個形式不一樣的算式,結(jié)果卻是一樣的。這都是在學生已有的知識經(jīng)驗的基礎上得到的結(jié)論,是來自于學生已有的數(shù)學知識水平的。
《乘法分配律》教學反思5
本節(jié)課的教學我主要以幾何直觀為切入點,引導學生通過畫一畫,算一算等學習活動,小組合作,共同經(jīng)歷乘法分配的探究過程,借助圖形探知、理解乘法分配律。
1、問題情境的創(chuàng)設需更貼近學生的生活。
試講過后與大家的感覺一樣,學生對設計草莓大棚的這個話題不是特別感興趣,接受工作室友們提出的寶貴意見后,想把情境創(chuàng)設改為設計學校的操場。由于學校里孩子們數(shù)量每年都在增加,孩子們喜歡的小操場越來越擠,想要擴建這個長方形的小操場,怎么辦呢?這個話題與孩子們的生活息息相關(guān),應該比上一次設計的話題更容易引起他們的關(guān)注。
2、教學的設計要尊重已有的知識經(jīng)驗。
本節(jié)課設計一始,所需的計算方法與原來學過的計算長方形面積有關(guān)。長方形的面積長乘寬,即使個別學生忘記也很容易喚醒。我鼓勵學生大膽去猜想, 在計算之前先要在頭腦中勾勒出長方形的模樣,激發(fā)學生在畫圖中梳理題中的數(shù)學信息。接下來的三次探究過程,先是教師設定長方形增加的長,再次是學生自己設定長度,再到后來自己設定三個量,給學生充分的想象和發(fā)揮空間,發(fā)揮學生主體的主動作用,即使學生在研究中遇到困難,有小組合作交流討論環(huán)節(jié)也使學生之間有了互相學習和提高的過程。
學生在已有的知識經(jīng)驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在得出結(jié)論的`過程中,有的同學用到了文字說明,也有同學是符號表示,還有的是字母表示,無論出現(xiàn)得出的哪種結(jié)論,老師都予以肯定和表揚,目的是讓學生從自己的數(shù)學現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。
在學生展示匯報的過程中,雖然字母表示的方法更清晰,大家更喜歡,但課后覺得能用文字表述其實是更難的一件事,對這樣的孩子應該在課堂上再多給學生一些鼓勵與肯定,學生的學習興趣會更濃,他們學到的東西可能也會更多。
3、在具體操作中完成由具體到抽象的思維演練。
孩子們自己填寫的數(shù)字各不相同,在不同的計算方法和有不同的計算結(jié)果中,使學生感受到大量在實例計算后,大膽地完成了由猜想到驗證的過程。猜想是科學發(fā)現(xiàn)的前奏。學生的學習活動中不能沒有猜想,否則,主體性探究活動便缺少了內(nèi)在的動力,自主學習的過程也成了失去目標的無意義操作。接下來的舉例就成了驗證猜想的必需,無論猜想的結(jié)論是“是”還是“非”,學生的思維一直是活躍著的,對學生都是有意義的。這個過程是教會學生學習與掌握探索方法的過程,是培養(yǎng)學生學習品格的過程。
在研究的過程中,如何利用小組合作資源,把研究中遇到困難的,興趣保持不下去的同學的積極性再調(diào)動一下就更好了。
課堂學習的過程,一切以師生間,生生間建立的平等交流這個平臺才得以順得完成,教學過程是師生共創(chuàng)共生的過程,師生成為共同建構(gòu)學習的參與者。在上述的教學活動中,教師讓學生充分經(jīng)歷學習過程,調(diào)動學生學習的熱情:想象——猜想——舉例——驗證,在欣賞學生的“閃光”處給學生“點撥”。師生在課堂交流中才得以共同成長。
《乘法分配律》教學反思6
《乘法分配律》一直是四則運算定律的一個難點,學生最容易出錯。比如38與99相乘,就容易出現(xiàn)“只把38與100相乘后再減1”的錯誤。還有的學生在計算125×48時,會出現(xiàn)“125×(6×8)=125×6+125×8“這樣的錯誤。究其原因,還是未能真正理解乘法的含義和乘法的運算定律。
在教學中,我也想了很多辦法來解決這些問題,比如讓學生背乘法分配律的含義,經(jīng)常讓學生做點這樣的易錯題?砂l(fā)現(xiàn)效果不是很明顯,尤其是有幾個孩子,一會就忘記了。后來,我想:還是必須從理解乘法的意義中去學會乘法分配律。于是,我就在輔導這幾名學生時,要求他們說出每一個算式表示的含義,再說一說自己做錯的算式的含義,從而在對比中來發(fā)現(xiàn)、理解自己的'錯誤,明白了自己錯誤的原因后,再來思考正確的解題思路,經(jīng)過幾次這樣的訓練,效果好多了。
《乘法分配律》教學反思7
1、在思考如何設計《乘法分配律練習課》之前,我收集了一些本校四年級學生的錯題,進行分析,了解學生的學習現(xiàn)狀,針對學生普遍存在的問題進行教學設計。
2、經(jīng)過調(diào)查發(fā)現(xiàn)學生出現(xiàn)錯誤的根本原因在于不理解算式的意義,僅僅停留在題目表面,先找相同因數(shù),再套用公式,不能按照算理正確地思考簡算過程。所以我認為,這節(jié)練習課應該從最樸素的算理——乘法的意義出發(fā),抓住問題本質(zhì),才能對癥下藥。教學中我通過兩個判斷練習,引導學生從乘法意義的角度理解乘法分配律,從學生的反饋來看,這樣的設計教學效果比較合理科學的,學生在進行簡算時已經(jīng)有了檢查的意識。而不再是盲目地套用格式。
3、通過將乘法分配律常見題型進行歸類,不同題型采用了不同的小妙招來解決,題目形式變化,解決方法也不同,但只要符合“幾個幾加上幾個幾”的意義,緊扣每一步都相等,就能夠借助乘法分配律進行簡算。學生對這4個簡算小妙招比較感興趣,從練習反饋來看學習效果比較好。
本節(jié)課的教學設計合理、教學重難點突出,教學目標明確、教學效果比較好。當然也有一些不足之處:在計算大長方形的.面積時,課件上呈現(xiàn)的數(shù)字要把單位帶上,如果時間允許,最好給學生5分鐘左右的集中練習的時間。
《乘法分配律》教學反思8
小學數(shù)學《乘法分配律》教學反思教學乘法分配律之后,發(fā)現(xiàn)學生的正確率很低,特別是對乘法結(jié)合律與乘法分配律極容易混淆。針對這種情況,我認為在教學中應該注意這些問題:
1、乘法分配律的教學既要注重它的外形結(jié)構(gòu)特點,也要同時注重其內(nèi)涵。
教學中通過解決買水果濟青高速公路全長約多少千米?這一問題,結(jié)合具體的生活情景,得到了(110+90)2=1102+902這一結(jié)果。這時我們往往比較注意了等式兩邊的外形結(jié)構(gòu)特點,即兩數(shù)的和乘一個數(shù)=兩個積的和。缺乏從乘法意義角度的理解。所以這里我們不僅要從解題思路的角度理解兩個算式是相等的,還要從乘法的意義的角度理解,即左邊表示200個2,右邊也表示200個2,所以(110+90)2=1102+902
2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點,多進行對比練習。
乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩數(shù)的和乘一個數(shù)或兩個積的和。在練習中(40+4)25與(404)25這種題學生特別容易出現(xiàn)錯誤。為了學生更好地掌握可以多進行一些對比練習。如:進行題組對比15(84)和15(8+4);25125258和25125+258;練習中可以提問:每組算式有什么特征和區(qū)別?符合什么運算定律的特征?應用運算定律可以使計算簡便嗎?為什么要這樣算?
3、讓學生進行一題多解的練習,經(jīng)歷解題策略多樣性的過程,優(yōu)化算法,加深學生對乘法結(jié)合律與乘法分配律的理解。
如:計算12588;10189你能用幾種方法?
12588 ①豎式計算; ②125811;③125(80+8);④125(100-12);⑤(100+25)88; ⑥(100+20+5)88等等。
10189 ①豎式計算;②(100+1)89;③101(80+9);101(100-11);101(90-1)等。對不同的解題方法,引導學生進行對比分析,什么時候用乘法結(jié)合律簡便,什么時候用乘法分配律簡便?明確利用乘法結(jié)合律與乘法分配律進行間算的條件是不一樣的。乘法分配律適用于連乘的算式,而乘法分配律一般針對有兩種運算的.算式。力爭達到用簡便算法進行計算成為學生的一種自主行為,并能根據(jù)題目的特點,靈活選擇適當?shù)乃惴ǖ哪康摹?/p>
4、多練,針對典型題目多次進行練習。
練習時注意練習量和練習時間的安排。剛開始可以天天練,過段時間以后可以過1-2天練習一次,再到1周練習一次。典型題型可選擇(40+4)25;(404)25;6325+6375;65103-653;5699+56;12588;48102;4899等。對于比較特殊的題目可間斷性練習,對優(yōu)生提出掌握的要求。如3698+72;6825+68+6874,3212525等。
《乘法分配律》教學反思9
學生在前面的學習中已經(jīng)學習了一些有關(guān)運算律的知識,對加法交換律、結(jié)合律、乘法交換律、結(jié)合律有一定的了解和認識,這些都為本課的學習奠定了基礎。本課的教學環(huán)節(jié)和前面學習運算律的教學基本相似,所以學生也有一定的學習方法和經(jīng)驗,所以乘法分配律的歸納和揭示還是比較順利的。我重點是結(jié)合練習幫助學生進一步的認識乘法分配律的意義以及它與其他運算律的區(qū)別。特別是對幾個數(shù)字的觀察和比較以及等式兩邊的式子分別表示的意義等,通過這樣的引導,加深學生對乘法分配律含義的理解,為后面的簡便運算的學習奠定基礎。
相對于其他運算律的簡便運算,應用乘法分配律進行簡便運算,學生在實際的運用方面還是有一定困難的'。教學中我是分層進行教學的。首先安排的是最基本,學生直接根據(jù)乘法分配律就可以直接進行簡便運算。在這個環(huán)節(jié),我主要是通過練習加深學生對乘法分配律的理解和運用,特別是逆向的運用。接著,在練習環(huán)節(jié)進行一定的拓展和變化,通過觀察、比較等方式,引導學生發(fā)現(xiàn)算式間的聯(lián)系,從而能夠靈活的運用運算律。在這個環(huán)節(jié),我發(fā)現(xiàn)部分學生仍然是在逆向的運用上出現(xiàn)了一些問題。這可能也與學生的思維定勢有關(guān)系。
《乘法分配律》教學反思10
乘法分配律是學生較難理解和敘述的定律,比起乘法交換率和乘法結(jié)合率男掌握的多。因此在本節(jié)課教學設計上,我結(jié)合新課標的一些基本理念和學生的具體情況,注重從實際出發(fā),把數(shù)學知識和實際生活緊密聯(lián)系起來,讓學生在不斷的感悟和體驗中學習新知識。
《數(shù)學課程標準》指出:“學生的數(shù)學學習內(nèi)容應當是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的!睌(shù)學教育家波利亞曾經(jīng)說過:“數(shù)學教師的首要責任是盡其一切可能,來發(fā)展學生解決問題的能力!倍覀冞^去的教學往往比較重視解決書上的數(shù)學問題,學生一旦遇到實際問題就束手無策。因此,上課一開始,我創(chuàng)造性地使用教材,創(chuàng)設了一個肯德基餐廳用餐的情境,使學生置身于非常熟悉的生活情境中,極大地激發(fā)了學生的學習欲望。學生很快地按要求用兩種不同的方法列出算式,并且能夠輕而易舉地證明兩式相等。接著要求學生通過觀察這個等式看看能否發(fā)現(xiàn)什么規(guī)律。在此基礎上,我并沒有急于讓學生說出規(guī)律,而是繼續(xù)為學生提供具有挑戰(zhàn)性的研究機會:“請你再舉出一些符合自己心中規(guī)律的等式”,繼續(xù)讓學生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點,驗證其內(nèi)在的規(guī)律,從而概括出乘法分配律。這樣既培養(yǎng)了學生的猜想能力,又培養(yǎng)了學生驗證猜想的能力。學生通過自主探索去發(fā)現(xiàn)、猜想、質(zhì)疑、感悟、調(diào)整、驗證、完善,主體性得到了充分的發(fā)揮。
同時,我還注重學生的合作與交流,多向互動。倡導課堂教學的動態(tài)生成是新課程標準的重要理念。在數(shù)學學習中,每個學生的思維方式、智力、活動水平都是不一樣的。因此,為了讓不同的學生在數(shù)學學習中得到不同的發(fā)展,我在本課教學中立足通過生生、師生之間多向互動,特別是通過學生之間的互相啟發(fā)與補充來培養(yǎng)他們的合作意識,實現(xiàn)對“乘法分配律”的主動建構(gòu)。學生在這樣一個開放的`環(huán)境中博采眾長,共同經(jīng)歷猜想、驗證、歸納知識的形成過程,共同體驗成功的快樂。既培養(yǎng)了學生的問題意識,又拓寬了學生思維能力,學生也學得積極主動。
應用規(guī)律,解決實際問題是數(shù)學學習的目的所在。在練習題型的設計上,有搶答(填空)題、判斷題、連線題、簡算題和拓展題,它們并不孤立,而是有機地聯(lián)系在一起,由基本題到變式題,由一般題到綜合題,有一定的梯度和廣度。使學生逐步加深認識,在弄清算理的基礎上,學生能根據(jù)題目的特點,靈活地運用所學知識進行簡便運算和拓展練習。不僅要求學生會順向應用乘法分配律,而且還要求學生會反向應用。通過正反應用的練習,加深學生對乘法分配律的理解。從課堂反饋來看,學生熱情較高,能夠?qū)W以致用,知識掌握的牢固。學生通過自己的努力以及和同學的交流合作,解題速度和準確性都很理想。
本節(jié)課有一定的亮點,但其中出現(xiàn)了不少問題:學生參與的積極性沒有預想中那么高?赡芘c我相對缺乏激勵性語言有關(guān)。也有可能今天的題材學生不太感興趣。以后注意,學生不感興趣的材料,教師應該想辦法使呈現(xiàn)的這個材料變得能讓學生感興趣。另外,在回答問題時,個別學生的語言不夠流利、準確。對乘法分配律的敘述稍顯羅嗦,不夠堅定、自信。在這方面有待今后加強訓練和提高。
《乘法分配律》教學反思11
乘法分配律是繼乘法交換律、乘法結(jié)合律之后的新的運算定律,在算術(shù)理論中又叫乘法對加法的分配性質(zhì),由于它不同于乘法交換律和結(jié)合律是單一的運算。
從某種程度上來說,其抽象程度要高一些,因此,對學生而言,難度偏大,是計算的一個難點。因為它不僅僅是的乘法運算,還涉及到加法運算。這節(jié)課劉老師教學目標定位準確,沒有把目標定位局限于探索理解乘法分配律,而是又引導學生應用乘法分配律進行了簡便計算,通過學生與學生之間的互相啟發(fā)與補充,老師的及時點撥,實現(xiàn)對“乘法分配律”這一運算定律的主動建構(gòu)。整節(jié)課的學習氛圍輕松愉悅、學生思維活躍、教學效果非常好;就瓿山虒W任務。
劉老師對本課的教學設計很科學,思路清晰,發(fā)現(xiàn)問題——觀察比較——舉例驗證——歸納規(guī)律——運用規(guī)律,讓學生經(jīng)歷了從具體到抽象,再由抽象到具體的知識推理方法,這節(jié)課不僅教會了乘法分配律,更教會了學生一種數(shù)學思想和數(shù)學方法,這也正是新課標強調(diào)的對學生其中兩基培養(yǎng)的體現(xiàn)。
一、讓學生從生活實例去理解乘法分配律
一共25個小組參加植樹活動,每組里8人負責挖坑和種樹,4人負責抬水和澆樹。重組教材,改變每組的人數(shù),由(4+2)個25,變?yōu)?8+6)個25更能凸顯出應用乘法分配律后帶來的方便,也為乘法分配律的應用打下伏筆和基礎。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學生理解帶來的困難。
通過引入解決問題讓學生得到兩個算式。先捉其意義,再突顯其表現(xiàn)的形式。
如(4+2)×25其意義就是6個25與4×25+2×25所表示的也是4個25再加2個25也就是6個25,它們的表示意義一樣。因此得數(shù)也一樣故成等量關(guān)系。然后觀察它們之們的形式變化特點,兩個數(shù)的.和乘以一個數(shù)可以寫成兩個積相加的形式,再捉住因數(shù)的特點進行分析。在此基礎上,我并沒有急于讓學生說出規(guī)律,而是繼續(xù)為學生提供具有挑戰(zhàn)性的研究機會
借助對同一實際問題的不同解決方法讓學生體會乘法分配律的合理性。這是生活中遇到過的,學生能夠理解兩個算式表達的意思,也能順利地解決兩個算式相等的問題。
二、突破乘法分配律的教學難點
讓學生親歷規(guī)律探索形成過程。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值。既然是“規(guī)律定律”,就是讓學生親歷規(guī)律形成的科學過程設計中,不著痕跡的讓學生不斷觀察、比較、猜想、驗證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數(shù)學思想和方法。
相對于乘法運算中的其他規(guī)律而言,乘法分配律的結(jié)構(gòu)是最復雜的,等式變
形的能力是教學的難點。為了突破這個教學難點,從生活中的實際問題出發(fā),開放引入的情境,一共25個小組參加植樹活動,每組里人負責,人負責。一共有多少同學參加這次植樹活動?
學生主動去設計、解決,調(diào)動學生的積極性。讓學生根據(jù)自己的想法,選擇自己喜歡的方案,開放給學生,發(fā)揮學生的主體性,通過去發(fā)現(xiàn)、猜想、質(zhì)疑、感悟、調(diào)整、驗證、完善,驗證其內(nèi)在的規(guī)律,從而概括出乘法分配律。讓學生能自由地利用自己的知識經(jīng)驗、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點的活動中。
在學生已有的知識經(jīng)驗的基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學是橫向觀察,也有同學是縱向觀察,目的是讓學生從自己的數(shù)學現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。
當然,對乘法分配律的意義還需做到更式形結(jié)合解釋,那就更有利于模型的建立。
建議:在教學中不僅要注意乘法分配律的外形結(jié)構(gòu),更要注重其內(nèi)涵。如兩個算式為什么會相等?缺乏從乘法意義的角度進行理解。在理解這一概念時,尤其要抓住關(guān)鍵詞“分別”加以分析,以此深化對數(shù)學模型的理解。否則,象38×99+38這樣的形式,就會成為學生練習中的攔路虎。
《乘法分配律》教學反思12
學生在進行了乘法結(jié)合律與乘法分配律這兩堂課的新課學習之后,不知道是教學方面的設計和學生學習狀態(tài)等什么方面的原因,總感覺學生在這兩個方面的認識存在著很多的疑惑。新教材在對于這種運算定律方面的教學沒有要求從文字語言方面加以敘述,只是要求學生能夠在觀察、發(fā)現(xiàn)、猜想、舉例、驗證、總結(jié)的一系列基礎上得出規(guī)律,盡管課堂上面學生都能夠動起來,但是真正地在靈活運用方面確不能夠令老師滿意,所以在練習課中我們好好地研討了練習的重點與策略,從實際效果上來說還是不錯的。
課堂的設計首先從學生學習的乘法運算定律入手,讓學生能夠把乘法交換律、結(jié)合律、分配律三者的區(qū)別和聯(lián)系弄清楚;其次是出示了一些在運用定律過程中要經(jīng)常要用到的口算題,讓學生們根據(jù)數(shù)字的特點做到選擇運算定律時心中有數(shù);然后是一系列的填空題與連線題,這些都是仿照定律的模型設計的,使學生明白套用的基本步驟和道理;緊接著接是一組動手計算題,重點是要求學生運用乘法交換律、結(jié)合律、分配律去進行解答,但是這是一些基礎題,學生應該在課堂學習的基礎上基本都能夠解答,老師強調(diào)解題的格式;在這一些環(huán)節(jié)的聯(lián)系之后,本堂課重點的內(nèi)容也就產(chǎn)生了,老師出示了十道帶有技巧的`題目,要求學生首先觀察,你覺得運用什么方法解決比較簡便,第一步怎樣操作;可以任意選擇一道題;其他同學可以補充不同的意見和方法。這樣一來,學生們的積極性高漲,大家踴躍發(fā)言,表達自己的觀點,發(fā)表自己的意見,對于各種不同類型的題目有了一個綜合練習;最后出示了兩道與實際情景聯(lián)系緊密的生活中的應用題,需要學生在列出算式之后合理的運用簡便方法論加以計算。課堂有層次,練習有坡度,達到了實際的效果。
自由探索與合作交流是《數(shù)學新課標》中提出的學生學習數(shù)學的重要方式。教學實踐也證明,在自由探索與合作交流的學習方式中,學生認識活動的強度和力度要比單純接受知識大得多。在本節(jié)課的實施中的每一個學習活動,都試圖以學生個性思維,自我感悟為前提多次設計了讓學生自主探索,合作交流的時間與空間。通過學生的觀察,學生之間和諧有效地互動,強化了學生的自我意識,自我感情。
在日常生活中,數(shù)學真是無處不在,處處留心皆學問。如果學生們能處處留心數(shù)學問題,并運用數(shù)學知識去解決這些實際問題;能夠在認真觀察的基礎上,根據(jù)數(shù)字的特點,靈活地選擇運算定律,找到適合自己的最佳的簡算方法,那么自己的教學就成功了。盡管在課堂上也許還不能夠全部掌握簡算的知識,只要在日常的學習和生活計算的過程中,能夠?qū)W會善于觀察,自覺運用,就能達到熟能生巧的效果,學習成績與學習能力也會有很大程度的提升。
《乘法分配律》教學反思13
教學乘法分配律之后,發(fā)現(xiàn)學生的正確率很低,特別是對乘法結(jié)合律與乘法分配律極容易混淆。針對這種情況,在教學中應該注意些什么呢?
1、乘法分配律的教學既要注重它的外形結(jié)構(gòu)特點,也要同時注重其內(nèi)涵。
教學中通過解決“一共貼了多少塊瓷磚?”這一問題,結(jié)合具體的生活情景,得到了(6+4)×9=6×9+4×9這一結(jié)果。這時老師往往注意了等式兩邊的“外形”結(jié)構(gòu)特點,即兩數(shù)的和乘一個數(shù)=兩個積的和。缺乏從乘法意義角度的理解。這時教師可提問“為什么兩個算式是相等的?”這里不僅要從解題思路的角度理解(6+4)×9=6×9+4×9是相等的,還要從乘法的意義的角度理解,即左邊表示10個9,右邊也表示10個9,所以(6+4)×9=6×9+4×9。
2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點,多進行對比練習。
乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩數(shù)的和乘一個數(shù)或兩個積的和。在練習中(40+4)×25與(40×4)×25這種題學生特別容易出現(xiàn)錯誤。為了學生更好地掌握可以多進行一些對比練習。如:進行題組對比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習中可以提問:每組算是個有什么特征和區(qū)別?符合什么運算定律的特征?應用運算定律可以使計算簡便嗎?為什么要這樣算?
3、 讓學生進行一題多解的練習,經(jīng)歷解題策略多樣性的過程,優(yōu)化算法,加深學生對乘法結(jié)合律與乘法分配律的理解。
如:計算125×88;101×89你能用幾種方法? 125×88 ①豎式計算; ②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88; ⑥(100+20+5)×88等等。101×89 ①豎式計算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。對不同的解題方法,引導學生進行對比分析,什么時候用乘法結(jié)合律簡便,什么時候用乘法分配律簡便?明確利用乘法結(jié)合律與乘法分配律進行間算的條件是不一樣的。乘法分配律適用于連乘的`算式,而乘法分配律一般針對有兩種運算的算式。力爭達到“用簡便算法進行計算”成為學生的一種自主行為,并能根據(jù)題目的特點,靈活選擇適當?shù)乃惴ǖ哪康摹?/p>
4、多練。
針對典型題目多次進行練習。練習時注意練習量和練習時間的安排。剛開始可以天天練,過段時間以后可以過1-2天練習一次,再到1周練習一次。典型題型可選擇(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。對于比較特殊的題目可間斷性練習,對優(yōu)生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。
《乘法分配律》教學反思14
曾經(jīng)真的以為自己是一個很負責任的人:我愛我的學生,我愛我的數(shù)學教學,甚至可以為了我的學生與數(shù)學教學,放棄我個人的休息時間,為的只是我愛的學生能愛上我教的數(shù)學,能把數(shù)學學得很出色。然而為什么總是事與愿違,成效“背叛”了設想,作業(yè)“背叛”了課堂?一切顯得那么捉襟見肘,“徒勞無功”成了我這學期最大的感受,到底問題出在哪里呢?當我回想起教學中一點一滴的瑣事,老師們交流時的'經(jīng)驗之談,再重新翻閱起一些理論書刊時,我似乎意識到自己其實早已經(jīng)“背叛”了數(shù)學教學。
“哦,簡單,簡單!”黃玄昶又樂滋滋地高高舉起他的手,果然不出我所料,他的回答又正中我的下懷,這不正是我所期望的答案嗎?說實話,開公開課我就喜歡像他這樣的學生,積極舉手發(fā)言,而且一步一步被我“引進”來,突出所謂的教學重點,攻克預設的教學難點,最后解決相應的問題,“看上去很美”,真的,經(jīng)過我的“引導”,他能“自主探索”,尋求規(guī)律,最后消除疑問,這不是一件看上去很“完美”的事嗎?
可是……“怎么又錯了!”我真是納悶,上課如此“高效”的人,怎么作業(yè)就這么慘不忍睹?題目稍一拐彎,就轉(zhuǎn)不過來了,曾經(jīng)我把他定論為思維的靈活性不夠,然而上完這堂《利用乘法分配律進行簡便運算》后,經(jīng)過反思與請教,我終于發(fā)現(xiàn)我錯了。
《乘法分配律》教學反思15
師:出示教學掛圖并提問:從圖上你知道什么?
生:張阿姨買5件夾克衫和5條褲子,一共要付多少錢?
師:能自己列式解答嗎?(教師巡視,學生解答)
讓用兩種不同方法解答的學生分別板演。
師:說說65×5+45×5這種解答方法是怎樣想到的?
生:先算買夾克衫和買褲子各用多少元?
師:(65+45)×5這種方法呢?
生:先算買一套衣服用多少元?
師:比較這兩種方法,有什么不同和相同呢?
生:想的方法不同導致列的算式不同,但結(jié)果相同
師:結(jié)果相等的兩個算式可以用什么連接?
生:等號揭示:(65+45)×5=65×5+45×5
師:仔細觀察等號兩邊的算式,它們有什么聯(lián)系嗎?(從數(shù),運算符號思考)
生:結(jié)果相等,都有三個數(shù),5左邊出現(xiàn)了1次,右邊出現(xiàn)了兩次,左邊先加再乘,右邊先乘再加……
師:等號左邊先算什么?右邊呢?
生:等號左邊是65加45的和乘5,右邊是65乘5的.積加45乘5的積。
師:你能模仿著寫出幾組這樣的算式嗎?學生試寫
學生列舉驗證,教師將學生列舉的等式寫在黑板上,并讓學生說出等式兩邊的得數(shù)。
師:還有很多同學想說,像這樣的例子舉得完嗎?
師:由此你想到些什么?
生:這里有規(guī)律。
師:我們可以用什么來表示這種普遍存在的規(guī)律呢?
生:(字母、符號、文字)
師:試著寫一寫吧
生:(a+b)×c=a×c+b×c
。ā+○)×□=△×□+○×□
師:小結(jié):像這樣兩個數(shù)的和與一個數(shù)相乘,也可以用這兩個數(shù)分別與這個數(shù)相乘,再把他們的積相加,這就是乘法分配律。(指著算式說)
順著讀,(任何事物都要從正反兩面去看)反過來讀乘法分配律
反思:
乘法分配律一課是蘇教國標版教材四年級下冊的內(nèi)容,是在學生經(jīng)過較長時間的四則運算學習,對四則運算已有較多感性認識的基礎上學習的。學生接觸過加法、乘法的驗算和口算等方面的知識,對此有較多的感性認識,這是學習乘法分配律的基礎。教材安排這個運算律是從學生解決熟悉的實際問題引入的,讓學生通過觀察、比較和分析,初步感受運算的規(guī)律。然后讓學生根據(jù)對運算律的初步感知,舉出更多的例子,進一步觀察比較,發(fā)現(xiàn)規(guī)律。教材有意識地讓學生運用已有經(jīng)驗,經(jīng)歷運算律的發(fā)現(xiàn)過程,讓學生在合作與交流中對運算律地認識由感性逐步發(fā)展到理性,合理地構(gòu)建知識。
課程標準提出“讓學生經(jīng)歷有效地探索過程”。教學中以學生為主體,激勵學生動眼、動手、動口、動腦積極探究問題,促使學生積極主動地參與“觀察——舉例——得出結(jié)論”這一數(shù)學學習全過程。學生掌握了學習方法,就等于拿到了打開知識寶庫地金鑰匙。由于乘法分配律是本課教學難點。教學中安排了三個層次,首先學生在觀察等式,初步感知等式特征的基礎上模仿寫等式,在模仿中逐步明晰特征。第二層次在觀察比較中概括特征,通過“由此你想到了些什么”引發(fā)學生聯(lián)想到是否具有普遍性。從而得到猜想:是不是所有的三個數(shù)都具有這樣的特征,再通過學生大量的舉例,驗證猜想,得出規(guī)律。本課從學生的學習情況來看,通過本課的學習不但掌握了乘法分配律的知識,更重要的是學會了數(shù)學方法,并產(chǎn)生運用這一數(shù)學方法進行探索的愿望和熱情。這些數(shù)學方法是學生終身學習必備的能力。
【《乘法分配律》教學反思】相關(guān)文章:
乘法分配律教學反思07-03
乘法分配律教學反思11-11
乘法分配律的教學設計08-11
《乘法分配律》教學設計05-20
乘法分配律教學設計01-04
乘法分配律教學設計09-22
乘法分配律教學設計15篇01-17
乘法分配律教學設計(15篇)03-07
乘法分配律教學設計匯編15篇04-06