- 正比例教學設計 推薦度:
- 相關推薦
正比例教學設計
作為一名為他人授業(yè)解惑的教育工作者,總不可避免地需要編寫教學設計,教學設計是教育技術的組成部分,它的功能在于運用系統(tǒng)方法設計教學過程,使之成為一種具有操作性的程序。你知道什么樣的教學設計才能切實有效地幫助到我們嗎?以下是小編為大家收集的正比例教學設計,希望對大家有所幫助。
正比例教學設計1
教學目標
1、知識與技能
、倮斫庹壤瘮(shù)的概念及正比例函數(shù)圖象特征。②知道正比例函數(shù)圖象是直線,會畫正比例函數(shù)的圖象;進一步熟悉作函數(shù)圖象的主要步驟。
2、過程與方法
、偻ㄟ^“燕鷗飛行路程問題”的探究和學習,體會函數(shù)模型的思想。②經(jīng)歷運用圖形描述函數(shù)的過程,初步建立數(shù)形結(jié)合,經(jīng)歷探索正比例函數(shù)圖象形狀的過程,體驗“列表、描點、連線”的內(nèi)涵。
3、情感態(tài)度與價值觀
①結(jié)合描點作圖培養(yǎng)學生認真細心嚴謹?shù)膶W習態(tài)度和習慣。②培養(yǎng)學生積極參與數(shù)學活動,勇于探究數(shù)學現(xiàn)象和規(guī)律,形成良好的質(zhì)疑和獨立思考的習慣。
教學重點:
探索正比例函數(shù)圖形的形狀,會畫正比例函數(shù)圖象。教學難點:正比例函數(shù)解析式的理解教學方法:探索歸納,啟發(fā)式講練結(jié)合教學準備:多媒體課件教學過程設計教學過程
一.提出問題,創(chuàng)設情境,激發(fā)學生的學習興趣情境
1、(1)你知道候鳥嗎?
。2)它們在每年的遷徙中能飛行多遠?
(3)燕鷗的飛行路程與時間之間有什么樣的數(shù)量關系?教師用課件展示問題。讓學生觀察圖片中的燕鷗,然后思考并解答課本上的問題。學生自主解決三個問題。教師在學生得到結(jié)論的基礎上提醒:這里用函數(shù)y=200x對燕鷗飛行路程和時間規(guī)律進行了刻畫!驹O計意圖】從具體情境入手,讓學生從簡單的實例中不斷抽象出建立數(shù)學模型、數(shù)學關系的方法。
二.出示本節(jié)課的學習目標
①理解正比例函數(shù)的概念及正比例函數(shù)圖象特征。
②知道正比例函數(shù)圖象是直線,會畫正比例函數(shù)的圖象;進一步熟悉作函數(shù)圖象的主要步驟。
教師用課件展示學習目標,學生齊聲朗讀,記憶。
【設計意圖】首先讓學生了解本節(jié)課的學習任務,有目的的進行本節(jié)課的學習。
三、自學質(zhì)疑:
自學課本86——87頁,并嘗試完成下列問題
1、寫出下列問題中的函數(shù)表達式
。1)圓的周長|隨半徑r的大小變化而變化
。2)汽車在公路上以每小時100千米的速度行駛,怎樣表示它走過的路程S(千米)隨行駛時間t(小時)變化的關系?
。3)每個練習本的厚度為,一些練習本摞在一起的總厚度h(單位:cm)隨這些練習本的本數(shù)n的變化而變化
(4)冷凍一個0度的物體,使它每分下降2度,物體的溫度T(單位:度)隨冷凍時間t(單位:分)的變化而變化
2、這些函數(shù)有什么共同點?這樣的函數(shù)我們把它們稱為正比例函數(shù)。由上得到的啟發(fā),你能試著給正比例函數(shù)下個定義嗎?學生先自主探究,后分組討論,然后教師讓各小組代表回答問題。師生互動對回答的問題進行分析評價。
【設計意圖】通過這些實際問題使學生進一步加深對函數(shù)概念的理解,也為導出正比例函數(shù)概念做好鋪墊。
教師引導學生觀察分析上面的四個表達式的共性:都是常數(shù)與自變量乘積的形式。教師口述并板書正比例函數(shù)的概念。
一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù).
教師讓學生看書,在定義處畫上記號,并提出問題:這里為什么強調(diào)k是常數(shù),k≠0?
上述問題中各正比例函數(shù)的比例系數(shù)分別是什么?(由學生一一說出)
做一做:下面的函數(shù)是不是正比例函數(shù)?y=3x y=2/x y=x/2 s=πr2
通過上面的例子,師生共同總結(jié)正比例函數(shù)須滿足下面兩個條件:
1、比例系數(shù)不能為0
2、自變量X的次數(shù)是一次的。
表示下列問題中的y與x的函數(shù)關系,并指出哪些是正比例函數(shù)。(1)正方形的'邊長為xcm,周長為ycm;(2)某人一年內(nèi)的月平均收入為x元,他這年的總收入為y元;(3)一個長方體的長為2cm,寬為,高為xcm,體積為ycm3 【設計意圖】通過歸納、分析使學生明白正比例函數(shù)的特征、理解其解析式的特點。
我們現(xiàn)在已經(jīng)知道了正比例函數(shù)關系式的特點,那么它的圖象有什么特征呢?自學課本87——89頁,并嘗試回答下列問題:[活動]
1、各小組合作回顧函數(shù)圖象的畫法,畫出下列函數(shù)的圖象(1)y=2x(2)y=—2x 【設計意圖】:通過活動,了解正比例函數(shù)圖象特點及函數(shù)變化規(guī)律,讓學生自己動手、動口、動腦,經(jīng)歷規(guī)律發(fā)現(xiàn)的整個過程,從而提高各方面能力及學習興趣.
教師活動:引導學生正確畫圖、積極探索、總結(jié)規(guī)律、準確表述.學生活動:利用描點法正確地畫出兩個函數(shù)圖象,在教師的引導下完成函數(shù)變化規(guī)律的探究過程,并能準確地表達出,從而加深對規(guī)律的理解與認識.活動過程與結(jié)論:
。保瘮(shù)y=2x中自變量x可以是任意實數(shù).列表表示幾組對應值:x—3—2—1 0 1 2 3 y—6—4—2 0 2 4 6畫出圖象如圖P1242.y=—2x的自變量取值范圍可以是全體實數(shù),列表表示幾組對應值:x—3—2—1 0 1 2 3 y 6 4 2 0—2—4—6畫出圖象如圖P112.
問:①、觀察兩個函數(shù)圖象,能得到那些信息?教師指導:觀察函數(shù)圖象從以下幾個方面進行:(1)自變量(2)函數(shù)值(3)升降性(4)特殊點(5)過了那幾個象限(6)圖象的形狀②、總結(jié)正比例函數(shù)圖象的性質(zhì)
。常畠蓚圖象的共同點:都是經(jīng)過原點的直線.不同點:函數(shù)y=2x的圖象從左向右呈
狀態(tài),即隨著x的增大y也增大;經(jīng)過第一、三象限.函數(shù)y=—2x的圖象從左向右呈下降狀態(tài),即隨x增大y反而減;y=—2x圖象經(jīng)過第二、四象限,從左向右呈
狀態(tài),即隨x增大y反而減小
三、鞏固練習:
1、判斷下列函數(shù)哪些是正比例函數(shù)
。1)y=2x
(2)y=kx(k≠0)
(3)y=—1/3x(4)y=1/2x+2
(5)y=3x2
。6)y=—3x2
2、教材練習題
比較兩個函數(shù)圖象可以看出:兩個圖象都是經(jīng)過原點的直線.函數(shù)的圖象從左向右上升,經(jīng)過
三、一象限,即隨x增大y也增大;函數(shù)?的圖象從左向右下降,經(jīng)過
二、四象限,即隨x增大y反而減小.
四、總結(jié)歸納正比例函數(shù)解析式與圖象特征之間的規(guī)律:
正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條經(jīng)過原點的直線,我們可稱它為直線y=kx.當k>0時,直線y=kx經(jīng)過
一、三象限,從左向右上升,即y隨x的增大而增大;當k
二、四象限,從左向右下降,即y隨x的增大而減小。
五、鞏固深化
1、畫正比例函數(shù)時,怎樣畫最簡便?為什么?教師活動:引導學生從正比例函數(shù)圖象特征及關系式的聯(lián)系入手,尋求轉(zhuǎn)化的方法.從幾何意義上理解分析正比例函數(shù)圖象的簡單畫法.學生活動:在教師引導啟發(fā)下完成由圖象特征到解析式的轉(zhuǎn)化,進一步理解數(shù)形結(jié)合思想,找出正比例函數(shù)圖象的簡單畫法,并知道原由.
活動過程及結(jié)論:經(jīng)過原點與點(1,k)的直線是函數(shù)y=kx的圖象.畫正比例函數(shù)圖象時,只需在原點外再確定一個點,即找出一組滿足函數(shù)關系式的對應數(shù)值即可,如(1,k).因為兩點可以確定一條直線.
隨堂練習:用你認為最簡單的方法畫出下列函數(shù)的圖像:(1)y=3/2x,(2)y=—3x
六、總結(jié)歸納,布置作業(yè)
1、在本節(jié)課中,我們經(jīng)歷了怎樣的過程,有怎樣的收獲?
2、你還有什么困惑?
作業(yè):P98習題19.2─1、2題.
教學設計說明:
本節(jié)教學設計以“自學質(zhì)疑,教師指導閱讀,咬文嚼字;合作釋疑,查漏補缺;展示評價,培養(yǎng)學生的概括能力;鞏固深化,細心讀題,學生說題,培養(yǎng)學生的語言表達能力”四個步驟強化了學生的閱讀意識,提高了學生的閱讀興趣,培養(yǎng)了學生的閱讀能力。較好的完成了本節(jié)課的學習目標。
正比例教學設計2
教學目標
知識與技能:理解正比例函數(shù)的意義;識別正比例函數(shù),根據(jù)已知條件求正比例函數(shù)的解析式或比例系數(shù)。過程與方法:通過現(xiàn)實生活中的具體事例引入正比例函數(shù),提高學生運用數(shù)學知識解決實際問題的能力。情感態(tài)度與價值觀:培養(yǎng)學生認真、細心、嚴謹?shù)膶W習態(tài)度和學習習慣,同時滲透熱愛大自然和生活的教育。
教學重點:識別正比例函數(shù),根據(jù)已知條件求正比例函數(shù)的解析式或比例系數(shù)。教學難點:理解正比例函數(shù)的意義。
教學設計
(一)創(chuàng)設情境,引入新知
20xx年7月12日,我國著名運動員劉翔在瑞士洛桑的田徑110米欄的決賽中,以12.88秒的成績打破了塵封13年的世界紀錄,為我們中華民族爭得了榮譽、
(1)劉翔大約每秒鐘跑多少米呢?
劉翔大約每秒鐘跑110÷12.88=8.54(米)、
。2)劉翔奔跑的路程s(單位:米)與奔跑時間t(單位:秒)之間有什么關系?
假設劉翔每秒奔跑的路程為8.54米,那么他奔跑的路程s(單位:米)就是其奔跑時間t(單位:秒)的函數(shù),函數(shù)解析式為s= 8.54t
(0≤t ≤12.88)、
(3)在前5秒,劉翔跑了多少米?
劉翔在前5秒奔跑的路程,大約是t=5時函數(shù)s= 8.54t的值,即s=8.54×5=42.7(米)、
教師活動:教師用多媒體呈現(xiàn)問題,學生活動:學生思考并解答。教師重點關注:學生能否順利寫出y與x的函數(shù)關系式。注意自變量的取值范圍、
設計意圖:
通過“劉翔”這一實際情境引入,使學生認識到現(xiàn)實生活和數(shù)學密不可分,向?qū)W生滲透熱愛運動、努力拼搏的精神。同時發(fā)展學生從實際問題中提取有用的數(shù)學信息,建立數(shù)學模型的能力。
。ǘ┯^察思考、歸納概念
問題1:
下列問題中的變量對應規(guī)律可用怎樣的函數(shù)表示?請指出函數(shù)解析式中的常數(shù)、自變量和自變量的函數(shù)、
。1)圓的周長l隨半徑r的大小變化而變化;
(2)鐵的密度為7.8g/ cm3,鐵塊的質(zhì)量m(單位:g)隨它的體積v(單位:cm3)的大小變化而變化。
(3)每個練習本的厚度為0.5 cm,一些練習本摞在一起的總厚度h(單位:cm)隨這些練習本的本數(shù)n的變化而變化;
(4)冷凍一個0 ℃物體,使它每分下降2 ℃,物體的溫度t(單位:℃)隨冷凍時間t(單位:分)的變化而變化、
教師活動:教師多媒體呈現(xiàn)上述四個實際問題。學生活動:學生獨立解答,解答后小組交流,出代表進行反饋。
設計意圖:
通過指出常數(shù)、自變量、自變量的函數(shù),對函數(shù)的概念進行回顧,從而為后續(xù)環(huán)節(jié)找正比例函數(shù)的共同點建立生長點。通過對實際問題討論,使學生體驗從具體到抽象的認識過程。
問題2:
教師活動:將上表中的前四個函數(shù)進行比較
思考:四個函數(shù)有什么共同特點?
學生活動:觀察、思考。小組交流,分析、歸納共同特點,出代表反饋。教師要根據(jù)學生的具體表現(xiàn),通過引導、點撥,使學生比較、觀察得出共同點。教師根據(jù)學生的表述板書:
共同點:常數(shù)×自變量、
學生閱讀教材正比例函數(shù)的概念
教師板書:
概念:一般地,形如y=kx(k是常數(shù),k ≠0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù)、
教師追問:這里為什么強調(diào)k是常數(shù),k≠0呢?正比例函數(shù)y=kx(k≠0)的結(jié)構特征
①k≠0
、趚的'次數(shù)是1
學生活動:學生交流、討論,互相補充。設計意圖:通過將前四個函數(shù)進行比較,是學生通過比較、觀察、分析、概括出正比例函數(shù)的共同特點,使學生明白正比例函數(shù)的特征,從而歸納出正比例函數(shù)的概念。有效地克服了因沒有對比直接觀察使學生出現(xiàn)的不適性、盲目性。培養(yǎng)學生的觀察、分析、歸納、概括等思維能力。
(三)練習運用,內(nèi)化概念
判斷下列函數(shù)是否為正比例函數(shù)?如果是,請指出比例系數(shù)。
教師活動:出示上題
學生活動:獨立解答,教師巡視。教師根據(jù)學生反饋情況,引導學生根據(jù)“常數(shù)×自變量”歸納辨別正比例函數(shù)要注意的問題。
設計意圖:
使學生結(jié)合實例深入理解概念的內(nèi)涵,做到具體問題具體分析。
。ㄋ模、針對訓練,提升能力
例1(1)若y=5x3m—2是正比例函數(shù),m=。
。2)若y=(3m—2)x是正比例函數(shù),則m的取值范圍____。變式練習1、若y=(m—1)xm2是關于x的正比例函數(shù),則m=
2、已知一個正比例函數(shù)的比例系數(shù)是—5,則它的解析式為:()
3、某學校準備添置一批籃球,已知所購籃球的總價y(元)與個數(shù)x(個)成正比例,當x=4(個)時,y=100(元)。
。1)求正比例函數(shù)關系式及自變量的取值范圍;
。2)求當x=10(個)時,函數(shù)y的值;
。3)求當y=500(元)時,自變量x的值。
(五)、小結(jié)與作業(yè):
小結(jié):
本節(jié)課你有哪些收獲?用你的語言說一說。
作業(yè):
課后練習1題、2題。設計意圖:
通過學生自己回顧、歸納本節(jié)內(nèi)容,使學生對本節(jié)課的內(nèi)容進行一次重新梳理,使學生能從整體上對本節(jié)內(nèi)容有一個深刻地認識,使知識內(nèi)化
板書設計
正比例函數(shù)
一、正比例函數(shù)概念:一般地,形如y=kx(k是常數(shù),k ≠0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù)
正比例教學設計3
教學內(nèi)容:
蘇教版義務教育課程標準實驗教科書第94頁《正比例和反比例》“練習與實踐”的第1-6題。
教材學情分析:
本節(jié)課是《正比例和反比例》復習的第二教時,教材重點引導學生交流判斷兩種量是否成比例、成什么比例的思考方法,并要求學生找出一些生活中成正比例或反比例量的例子,幫助學生進一步認識成正比例和反比例的量,感受正比例和反比例是描述數(shù)量關系及其變化規(guī)律的又一種有效的數(shù)學模型。
“練習與實踐”第7題讓學生根據(jù)提供的兩組數(shù)據(jù)判斷相應的兩種量分別成什么比例,有利于學生鞏固對成正比例和反比例量的認識,掌握判斷兩種量是否成比例以及成什么比例的基本思考方法;“練習與實踐”第8題讓學生結(jié)合生活經(jīng)驗以及相關數(shù)量關系的理解,繼續(xù)練習成正比例和反比例量的判斷方法;“練習與實踐”第9題的第一題讓學生根據(jù)表示一輛汽車在高速公路上行駛的千米數(shù)和耗油量關系的圖象,先判斷這兩種量是否成正比例,再根據(jù)其中一個量的數(shù)值估計另一個量的數(shù)值。第二題要求學生根據(jù)一輛汽車在市區(qū)行駛的千米數(shù)和耗油量關系的數(shù)據(jù),在方格紙上畫出表示它們關系的圖象。通過上述活動,一方面可以使學生加深對正比例關系的認識,另一方面可以使進一步體會數(shù)學結(jié)合在解決問題方面的價值;“練習與實踐”第10題是一個與比例尺有關的實際問題。教材先讓學生量出一幅平面圖上相關的圖上距離,再讓學生利用給出的比例尺求出相應的實際距離。教材這樣的安排,主要讓學生進一步體會比和比例知識的.應用價值,感受不同領域的數(shù)學內(nèi)容有著密切聯(lián)系的。
教學目標:
⑴使學生進一步認識成正比例和反比例的量,感受表示數(shù)量關系及其變化規(guī)律的不同數(shù)學模型;能運用比和比例的知識解決一些簡單實際問題,豐富解決問題策略,積累解決問題的經(jīng)驗。
⑵讓學生進一步體會比和比例知識的應用價值,感受不同領域的數(shù)學內(nèi)容有著密切聯(lián)系的。
、鞘箤W生在系統(tǒng)復習的過程中,體驗與同學合作交流以及獲取知識的樂趣,增進對數(shù)學學習的積極情感,增強學好數(shù)學的信心。
教學重點:
進一步認識成正比例和反比例的量。
教學難點:
感受比的應用價值,在活動中獲得一些新的認識。
教學具準備:
教學流程:
一、教師談話,揭示課題。
、沤處熣勗。
教師談話:上一節(jié)課我們復習了“比和比例”的有關知識,本節(jié)課我們繼續(xù)復習這方面的知識。板書:正比例和反比例。
、平沂菊n題。
揭示課題——正比例和反比例。
二、師生互動,合作交流。
、磐瓿伞熬毩暸c實踐”第7題。
呈現(xiàn)“練習與實踐”第7題,明確要交流的主題:表中的兩種量分別成什么比例?為什么?
班級交流判斷的方法:一是利用表中的數(shù)據(jù)進行判斷,在次體會正比例和反比例量在變化中的不同規(guī)律。成正比例關系的兩種量同時擴大或縮小,它們擴大或縮小的倍數(shù)是相同的;成反比例的兩種量,一個量擴大,另一種量反而縮小,它們擴大或縮小的倍數(shù)也是相同的;二是利用數(shù)量關系式判斷,表格一:因為鋼材質(zhì)量:鋼材體積=比重(一定),所以鋼材質(zhì)量和鋼材體積成正比例;表格二:圓柱底面積×圓柱高=圓柱的體積(一定),所以圓柱底面積和圓柱高成反比例;利用圖象判斷,用描點的方法畫出圖象,如果是直線,則成正比例。
、仆瓿伞熬毩暸c實踐”第8題。
呈現(xiàn)完成“練習與實踐”第8題,明確要思考的內(nèi)容:先寫出數(shù)量關系式,再判斷是否成比例?成什么比例?為什么?獨立寫出數(shù)量關系式,同桌交流。
第一問:因為每塊磚的面積×磚的塊數(shù)=一間教室的面積(一定),所以每塊磚的面積和磚的塊數(shù)成反比例;
第二問:因為圓的周長÷半徑=2π,所以圓的周長和半徑成正比例。
⑶完成“練習與實踐”第9題。
呈現(xiàn)完成“練習與實踐”第9題,明確要交流的內(nèi)容:判斷行駛的路程和耗油量是否成正比例;根據(jù)圖象用一種數(shù)據(jù)判斷另一種數(shù)據(jù)是多少。
班級交流理解、完成題目的情況,進行“根據(jù)圖象用一種數(shù)據(jù)判斷另一種數(shù)據(jù)是多少”的練習;反饋學生形成的正比例圖象的情況;比較汽車高速公路和市區(qū)耗油量的不同情況,體會比例知識在日常生活中的應用價值。
、韧瓿伞熬毩暸c實踐”第10題。
呈現(xiàn)完成“練習與實踐”第10題,理解題目的意思,分別量出學校到各個地方的圖上距離,形成以下板書:
圖上距離實際距離
學校-少年宮4厘米?米
學校-體育場3.5厘米?米
學校-市民廣場2.5厘米?米
學校-火車站7厘米?米
多種角度理解比例尺的意思:圖上距離1厘米表示實際距離600米;圖上距離1厘米表示實際距離60000厘米;……
解答:在多種書寫形式的基礎上,體會用“圖上距離1厘米表示實際距離600米”的優(yōu)越性。溝通和正比例之間的聯(lián)系。
、烧務劚竟(jié)課的收獲。
正比例教學設計4
尊敬的各位評委:
你們好!我將從教材分析、學況分析、教學目標、教學重難點、教法學法、教學準備、教學過程、效果預測幾個方面對本課進行介紹。
一、教材分析
1、教學內(nèi)容:人教版六年級下冊P39正比例的意義。
2、教材的地位和作用:這部分內(nèi)容是在學生學習了比和比例的基礎上進行教學的,著重使學生理解正比例的意義。正比例關系是比較重要的一種數(shù)量關系,學生理解并掌握這種數(shù)量關系,可以加深對比例的理解,并能應用它解決一些簡單的實際問題。同時通過正比例的教學進一步滲透函數(shù)思想,為學生今后學習打下基礎。
3、教學重點,難點、關鍵:
教學重點是理解正比例的意義,難點是能準確判斷成正比例的量,關鍵是發(fā)現(xiàn)正比例量的特征。
4、教學目標:
根據(jù)本課的具體內(nèi)容,新課標有關要求和學生的年齡特點,我從知識技能、過程與方法、情感態(tài)度三個方面確立了本課的教學目標。
知識與技能:學生認識成正比例的量以及正比例關系,并能正確判斷成正比例的量。
過程與方法:學生經(jīng)歷從具體實例中認識成正比例的量的過程,通過察、比較、分析、歸納等數(shù)學活動,發(fā)現(xiàn)正比例量的特征,并嘗試抽象概括正比例的意義。
情感態(tài)度:在主動參與數(shù)學活動的過程中,進一步體會數(shù)學和日常生活的密切聯(lián)系,增強從生活現(xiàn)象中探索數(shù)學知識和規(guī)律的意識。
二、學況分析
六年級學生具備一定的分析綜合、抽象概括的數(shù)學能力。在學習正比例之前已經(jīng)學習過比和比例,以及常見的數(shù)量關系。本節(jié)課在此基礎上,進一步理解比值一定的變化規(guī)律。學生容易掌握的是:判斷有具體數(shù)據(jù)的兩個量是否成正比例;比較難掌握的是:離開具體數(shù)據(jù),判斷兩個量是否成正比例。
三、教法
遵循教師為主導,學生為主體,訓練為主線的指導思想,通過游戲引入、自主探究、合作學習等方式進行教學,讓學生在自主、合作、探究的過程中歸納正比例的特征。
四、學法
引導學生在觀察比較的基礎上,獨立思考、小組合作交流。具體表現(xiàn)在學會思考,學會觀察,學會表達,并對學生進行激勵性的評價,讓學生樂于說,善于說。
五、教學過程
本節(jié)課我安排了六個教學環(huán)節(jié)
第一個環(huán)節(jié):游戲?qū),激發(fā)興趣
用游戲的方法將學生帶入輕松愉快的學習氛圍,激發(fā)學生的學習興趣,活躍課堂氣氛,同時也為后面教學做好了鋪墊,使學生很快進入學習狀態(tài)。
第二環(huán)節(jié):引導觀察,啟發(fā)思考
教學中讓學生自己計算游戲得分,并引導學生進行觀察,從而得出:得分隨著贏的.次數(shù)的變化而變化,他們是兩種相關聯(lián)的量,初步滲透正比例的概念。
第三環(huán)節(jié):創(chuàng)設情景,觀察實驗
用多媒體呈現(xiàn)數(shù)據(jù)的獲取過程,讓學生直觀地感受到水的體積和高度是兩個相關聯(lián)的量以及二者之間的變化規(guī)律。
第四環(huán)節(jié):探究成正比例的量
學生在反復觀察、思考,討論、交流的過程中自己建立概念,深刻的體驗使學生感受到獲得新知的樂趣。
第五環(huán)節(jié):鞏固練習,拓展提高
第六環(huán)節(jié):全課小結(jié)
六、效果預測
在教學的始終,我一直引導學生主動探索正比例的意義,加上課件的輔助教學和課堂練習,學生在理解掌握并且運用新知上,一定會輕松自如。所以,我預測本節(jié)課學生在知識、能力和情感上都能全面促進,達到預定的教學目的。
本節(jié)課在教學設計和具體環(huán)節(jié)的安排上,可能還存在不足的地方,懇請各位評委給予批評指正。
正比例教學設計5
教學目標
(一)教學知識點
1、認識正比例函數(shù)的意義。
2、掌握正比例函數(shù)解析式特點。
3、理解正比例函數(shù)圖象性質(zhì)及特點。
4、能利用所學知識解決相關實際問題。
教學重點
1、理解正比例函數(shù)意義及解析式特點。
2、掌握正比例函數(shù)圖象的性質(zhì)特點。
3、能根據(jù)要求完成轉(zhuǎn)化,解決問題。
教學難點
正比例函數(shù)圖象性質(zhì)特點的掌握。
教學過程
Ⅰ、提出問題,創(chuàng)設情境
一九九六年,鳥類研究者在芬蘭給一只燕鷗?鳥)套上標志環(huán)。4個月零1周后人們在2.56萬千米外的澳大利亞發(fā)現(xiàn)了它。
1、這只百余克重的小鳥大約平均每天飛行多少千米(精確到10千米)?
2、這只燕鷗的行程y(千米)與飛行時間x(天)之間有什么關系?
3、這只燕鷗飛行1個半月的行程大約是多少千米?
我們來共同分析:
一個月按30天計算,這只燕鷗平均每天飛行的路程不少于:
÷(30×4+7)≈200(km)
若設這只燕鷗每天飛行的路程為200km,那么它的行程y(千米)就是飛行時間x(天)的函數(shù)。函數(shù)解析式為:
y=200x(0≤x≤127)
這只燕鷗飛行1個半月的行程,大約是x=45時函數(shù)y=200x的值。即
y=200×45=9000(km)
以上我們用y=200x對燕鷗在4個月零1周的飛行路程問題進行了刻畫。盡管這只是近似的,但它可以作為反映燕鷗的行程與時間的對應規(guī)律的一個模型。
類似于y=200x這種形式的函數(shù)在現(xiàn)實世界中還有很多。它們都具備什么樣的特征呢?我們這節(jié)課就來學習。
、、導入新課
首先我們來思考這樣一些問題,看看變量之間的對應規(guī)律可用怎樣的函數(shù)來表示?這些函數(shù)有什么共同特點?
1、圓的周長L隨半徑r的大小變化而變化。
2、鐵的密度為7.8g/cm3。鐵塊的質(zhì)量m(g)隨它的體積V(cm3)的大小變化而變化。
3、每個練習本的厚度為0.5cm。一些練習本摞在一些的'總厚度h(cm)隨這些練習本的本數(shù)n的變化而變化。
4、冷凍一個0℃的物體,使它每分鐘下降2℃。物體的溫度T(℃)隨冷凍時間t(分)的變化而變化。
解:
1、根據(jù)圓的周長公式可得:L=2r。
2、依據(jù)密度公式p=可得:m=7.8V。
3、據(jù)題意可知:h=0.5n。
4、據(jù)題意可知:T=—2t。
我們觀察這些函數(shù)關系式,不難發(fā)現(xiàn)這些函數(shù)都是常數(shù)與自變量乘積的形式,和y=200x的形式一樣。
一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù)(proportional func—tion),其中k叫做比例系數(shù)。
我們現(xiàn)在已經(jīng)知道了正比例函數(shù)關系式的特點,那么它的圖象有什么特征呢?
[活動一]
活動內(nèi)容設計:
畫出下列正比例函數(shù)的圖象,并進行比較,尋找兩個函數(shù)圖象的相同點與不同點,考慮兩個函數(shù)的變化規(guī)律。
1、y=2x2、y=—2x
活動設計意圖:
通過活動,了解正比例函數(shù)圖象特點及函數(shù)變化規(guī)律,讓學生自己動手、動口、動腦,經(jīng)歷規(guī)律發(fā)現(xiàn)的整個過程,從而提高各方面能力及學習興趣。
教師活動:
引導學生正確畫圖、積極探索、總結(jié)規(guī)律、準確表述。
學生活動:
利用描點法正確地畫出兩個函數(shù)圖象,在教師的引導下完成函數(shù)變化規(guī)律的探究過程,并能準確地表達出,從而加深對規(guī)律的理解與認識。
活動過程與結(jié)論:
1、函數(shù)y=2x中自變量x可以是任意實數(shù)。列表表示幾組對應值:
x—3—2—
y—6—4—
畫出圖象如圖(1)。
2、y=—2x的自變量取值范圍可以是全體實數(shù),列表表示幾組對應值:
x—3—2—
y6420—2—4—6
畫出圖象如圖(2)。
3、兩個圖象的共同點:都是經(jīng)過原點的直線。
不同點:函數(shù)y=2x的圖象從左向右呈上升狀態(tài),即隨著x的增大y也增大;經(jīng)過第一、三象限。函數(shù)y=—2x的圖象從左向右呈下降狀態(tài),即隨x增大y反而減;經(jīng)過第二、四象限。
嘗試練習:
在同一坐標系中,畫出下列函數(shù)的圖象,并對它們進行比較。
1、y=x2、y=—x
x—6—4—
y=x—3—2—
y=—x3210—1—2—3
比較兩個函數(shù)圖象可以看出:兩個圖象都是經(jīng)過原點的直線。函數(shù)y=x的圖象從左向右上升,經(jīng)過三、一象限,即隨x增大y也增大;函數(shù)y=—x的圖象從左向右下降,經(jīng)過二、四象限,即隨x增大y反而減小。
總結(jié)歸納正比例函數(shù)解析式與圖象特征之間的規(guī)律:
正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條經(jīng)過原點的直線。當x>0時,圖象經(jīng)過三、一象限,從左向右上升,即隨x的增大y也增大;當k
正是由于正比例函數(shù)y=kx(k是常數(shù),k≠0)的圖象是一條直線,我們可以稱它為直線y=kx。
[活動二]
活動內(nèi)容設計:
經(jīng)過原點與點(1,k)的直線是哪個函數(shù)的圖象?畫正比例函數(shù)的圖象時,怎樣畫最簡單?為什么?
活動設計意圖:
通過這一活動,讓學生利用總結(jié)的正比例函數(shù)圖象特征與解析式的關系,完成由圖象到關系式的轉(zhuǎn)化,進一步理解數(shù)形結(jié)合思想的意義,并掌握正比例函數(shù)圖象的簡單畫法及原理。
教師活動:
引導學生從正比例函數(shù)圖象特征及關系式的聯(lián)系入手,尋求轉(zhuǎn)化的方法。從幾何意義上理解分析正比例函數(shù)圖象的簡單畫法。
學生活動:
在教師引導啟發(fā)下完成由圖象特征到解析式的轉(zhuǎn)化,進一步理解數(shù)形結(jié)合思想,找出正比例函數(shù)圖象的簡單畫法,并知道原由。
活動過程及結(jié)論:
經(jīng)過原點與點(1,k)的直線是函數(shù)y=kx的圖象。
畫正比例函數(shù)圖象時,只需在原點外再確定一個點,即找出一組滿足函數(shù)關系式的對應數(shù)值即可,如(1,k)。因為兩點可以確定一條直線。
Ⅲ。隨堂練習
用你認為最簡單的方法畫出下列函數(shù)圖象:
1、y=x2、y=—3x
解:除原點外,分別找出適合兩個函數(shù)關系式的一個點來:
1、y= x(2,3)
2、y=—3x(1,—3)
小結(jié):
本節(jié)課我們通過實例了解了正比例函數(shù)解析式的形式及圖象的特征,并掌握圖象特征與關系式的聯(lián)系規(guī)律,經(jīng)過思考、嘗試,知道了正比例函數(shù)不同表現(xiàn)形式的轉(zhuǎn)化方法,及圖象的簡單畫法,為以后學習一次函數(shù)奠定了基礎。
課后作業(yè)
習題11.2─1、2題。
正比例教學設計6
教學目標:
1 使學生理解什么是相關聯(lián)的量。
2 掌握正比例的意義及字母表達式。
3 學會判斷兩個量是否成正比例關系。
教學過程:
一、導入
師(板書:關聯(lián)):知道關聯(lián)是什么意思嗎?
生:指事物之間有聯(lián)系。
生:也可以指事物之間相互影響。
師:對,關聯(lián)就是指事物之間發(fā)生牽連和影響。
師:能舉一些生活中相互關聯(lián)的例子嗎?
生:天氣熱了,我們身上穿的衣服就少一些;天氣冷了,穿的衣服就會多一些,氣溫與我們穿的衣服是相關聯(lián)的。
生:我的考試分數(shù)多了,爸爸媽媽就很高興;如果少了,他們的臉上就會陰云密布,所以我的考試分數(shù)與家長的臉色也是相關聯(lián)的。(其他學生大笑)
生:我想姚明打球時,姚明的動作與防守他的對方隊員的動作也是相關聯(lián)的,即姚明怎么動,對方總有一個相應的對策,不可能永遠不變。
這時,一名學生干脆帶著他的同桌走到講臺上,兩個人當著全班學生的面,做起了學生經(jīng)常玩的推手游戲,即一人推手,另一人立刻向后閃開。然后這位學生說:“我們剛才的動作也是相關聯(lián)的!
生:上星期,我們班舉行智力競賽,每個小組每答對一題就得到10分,答對兩題得到20分……答對的題目越多,分數(shù)也就越高。因此,我認為答對的題目與最后的成績也是相關聯(lián)的。
二、新授
師:好一個答對的題目與最后的成績相關聯(lián)!我們把它們的情況列成下面的表格,可以嗎?
師:從這個表格中。你還知道什么?
生:答對一題得10分,答對兩題得20分,答對三題得30分……
師:表中有哪兩個量?它們的關系怎樣?
生:答對的題目與最后的成績,它們是兩個相關聯(lián)的量。
師:你們能夠從中發(fā)現(xiàn)什么規(guī)律?
生:從左向右看,答對的題目越多,分數(shù)就越高;從右向左看,答對的題目越少,成績就越低。
師:還能發(fā)現(xiàn)什么呢?
生:答對的次數(shù)擴大多少倍,得分也隨著擴大多少倍;反之,答對的次數(shù)縮小多少倍,得分也隨著縮小多少倍。
師(小結(jié)):也就是說,成績隨著答對的次數(shù)變化而變化,像這樣的'兩個量也叫做相關聯(lián)的量。
師:你能在這兩種量中,找到一組對應的數(shù)嗎?誰能說說在成績和答對的次數(shù)兩種量中,相對應的數(shù)的比嗎?比值是多少?
(隨著學生的回答,師板書:10/1=10、20/2=10、30/3=10、40/4=10……)
師:剛才這位同學在算出比值的時候,你們發(fā)現(xiàn)了什么?
生:不管怎樣,它們的比值不變。
師:這個比值實際上就是什么呀?(板書:每題的分數(shù))
師:你能用一個關系式表示嗎?
板書關系式:成績/答對的題目=每題的分數(shù)(一定)
師:我們再來看一道題目。請每個小組的小組長,將桌上信封中的信息單分給每一位同學。同學們可以根據(jù)上面的四個問題進行分析,在小組內(nèi)討論交流。如果你們遇到了什么問題,可以舉手,老師非常樂意幫助你們。(投影出示例1)
1表中有( )和( )兩種量。
2 路程是怎樣隨著時間的變化而變化的?
3 任意寫出三個相對應的路程和時間的比,并算出它們的比值。
4 比值實際上表示( ),請用式子表示它們的關系。
(學生交流匯報,師板書關系式)
師(指著剛剛學習的兩個表格):這是我們剛才分析過的兩個表,它們有什么共同點嗎?(板書:兩個相關聯(lián)的量)它們之間有什么關系呢?
(結(jié)合學生的發(fā)言,教師逐一板書,最后由學生通過看書,歸納出正比例的意義,由此完成概念教學)
反思:
從學生感興趣的事情入手,關注學生已有的知識與經(jīng)驗,并通過現(xiàn)實生活中的生動素材引入新課 ,使抽象的數(shù)學知識具有豐富的現(xiàn)實基礎,為學生的數(shù)學學習創(chuàng)設了生動活潑的情境,課堂氣氛活躍。
以往教學此內(nèi)容時,學生理解相關聯(lián)的量僅僅局限于“比值一定”,與后面學習“反比例的意義”教學未能形成有效的聯(lián)系,因而教學收效不大。此次教學,首先從教學目標上進行修改,增加了第一個教學目標,即“理解什么是相關聯(lián)的量”。教學設計大膽開放,真正關注學生的經(jīng)驗和興趣。教材的重點并不一定是學生學習的難點在這里得到了充分的體現(xiàn),給抽象的數(shù)學知識賦予了濃厚的現(xiàn)實背景,體現(xiàn)了新課程標準的教學理念,改變了傳統(tǒng)教學強調(diào)接受、機械訓練的學習方式。最后,由學生獨立得出結(jié)論,培養(yǎng)了學生解決問題的能力?此圃谛率谥袄速M了不少時間,實則高效地完成了教學任務,使學生有了更多自主、個性探究的機會,值得借鑒與提倡。
正比例教學設計7
教學目標:
1.初步理解正比例的意義,會根據(jù)正比例的意義判斷兩種相關聯(lián)的量是不是成正比例。
2.使學生在認識正比例的量的過程中,初步體會數(shù)量之間相依互變的關系,感受有效表示數(shù)量關系及其變化規(guī)律的不同數(shù)學模式,進一步培養(yǎng)觀察能力和發(fā)現(xiàn)規(guī)律的能力。
教學重點:
會根據(jù)正比例的意義判斷兩種相關聯(lián)的量是不是成正比例。
教學難點:
會根據(jù)正比例的意義判斷兩種相關聯(lián)的量是不是成正比例。
預習指導:
一、自學教材。
閱讀教材第62~63頁。
二、檢查學習。
1.怎樣兩個量成正比例?
2.完成"試一試"。
教學準備:
課件和口算題。
教學過程:
一、導入
談話:通過將近六年的學習,我們已經(jīng)了解了一些數(shù)量之間的關系,例如行程問題中的速度、時間、路程之間的關系,你知道這三個量之間的關系嗎?再如購物問題中單價、數(shù)量、總價之間的關系,你知道這三個量之間的關系嗎?這個單元我們要用一種新的觀點為,更深入地研究數(shù)量之間的關系。什么觀點呢?事物變化的觀點,讓一些量變起來,從變化中發(fā)現(xiàn)規(guī)律。
二、教學例1 1.課件出示例1的表
、趴匆豢,表中有哪兩種量?這兩種量的數(shù)值是怎樣變化的?
⑵表中有路程和時間這兩種量,通過觀察數(shù)據(jù)我們可以發(fā)現(xiàn)這兩種量是有關聯(lián)的,時間變化,路程也隨著變化。
2.那么這兩種量的變化有沒有什么規(guī)律呢?下面我們來作進一步的研究。建議大家可以寫出幾組相對應的路程和時間的比,看一看你有什么發(fā)現(xiàn)。
3.我們可以寫出這么幾組路程和對應時間的比。
、虐l(fā)現(xiàn)了它們的比值都是80,大家想一想,這個比值80表示什么呢?這個規(guī)律能不能用一個式子來表示?
、七@個比值80就表示汽車行駛的速度,從上面可以看出這個速度是相同的,一定的,因此可以用這樣一個式子來表示這個規(guī)律
、峭瑢W們,在這個題目中,路程和時間是兩種相關聯(lián)的量,時間變化,路程也隨著變化,當路程和對應時間的比的比值總是一定(也就是速度一定)時,我們就說行駛的路程和時間成正比例,行駛的路程和時間是成正比例的.量。
課件出示:路程和時間成正比例。
、痊F(xiàn)在你能完整地說一說表中路程和時間成什么關系嗎?
4.剛才我們初步認識了正比例的關系,接著我們繼續(xù)來看下面這個題目,教案《正比例意義教學設計》。
⑴課件出示"試一試"
⑵請大家先根據(jù)題目里的信息把表中的數(shù)據(jù)填完整,然后說一說總價是隨著哪個量的變化而變化的?
課件出示表中的數(shù)據(jù)。
⑶從表中我們可以看出鉛筆的總價是隨著購買數(shù)量的變化而變化的。
集體交流:
、任覀兿葋砜吹2個問題,可以寫出這么幾組對應的總價和數(shù)量的比=0.3、=0.3…它們的比值相等,你寫對了嗎?
、稍倏吹3個問題,這個比值表示的是鉛筆的單價,我們可以用總價:數(shù)量=單價(一定)這個式子來表示三者之間的關系。
小結(jié):鉛筆的總價和數(shù)量成正比例,因為總價和數(shù)量是兩種相關聯(lián)的量,數(shù)量變化,總價也隨著變化,當總價和是對應數(shù)量的比的比值總是一定(也就是單價一定)時,我們就說鉛筆的總價和購買的數(shù)量成正比例,鉛筆的總價和購買的數(shù)量是成正比例的量。
⑹你能完整地這樣說給你的同桌聽一聽嗎?
⑺同學們,我們通過以上的兩個例子認識了正比例的關系,想一想,如果用字母x和y分別表示兩種相關聯(lián)的量,用k表示它們的比值,那么正比例的關系可以用怎樣的式子表示?
課件出示課題。
、袒仡櫼幌,我們是根據(jù)什么來判斷兩種數(shù)量能成正比例的?
指出:我們可以根據(jù)兩種相關聯(lián)的量的比值是不是一定來判斷兩種數(shù)量能不能成正比例。
5.完成"練一練"
、耪埓蠹腋鶕(jù)表中的數(shù)據(jù)判斷生產(chǎn)零件的數(shù)量和時間成什么比例?并說說為什么?
⑵生產(chǎn)零件的數(shù)量和時間成正比例,因為生產(chǎn)零件的數(shù)量和時間是兩種相關聯(lián)的量,時間變化,零件的數(shù)量也隨著變化,當生產(chǎn)零件的數(shù)量和對應時間的比的比值總是一定(也就是每小時生產(chǎn)零件的個數(shù)一定)時,我們就說生產(chǎn)零件的數(shù)量和時間成正比例,生產(chǎn)零件的數(shù)量和時間是成正比例的量。
小結(jié):教師:同學們,今天我們學習了正比例的意義,你知道判斷兩種相關聯(lián)的量是否成正比例的方法了嗎?
三、練習
1.完成練習十三第1題。
請大家繼續(xù)看課本66頁第1題
2.完成練習十三第2題
、爬^續(xù)看第2題,請你判斷,同一時間,物體的高度和影長成正比例嗎?為什么?
⑵同一時間,物體的高度和影長成正比例,因為每次物體的高度和它對應的影長的比值都是三分之五,是一定的。
3.完成練習十三第3題(課件出示題目)
⑴課件出示放大后的三個正方形、
、拼蠹铱匆豢,你是這樣畫的嗎?
、墙又埻瑢W們對照表格計算出放大后每個正方形的周長和面積。
校對學生做的情況。
⑷請大家根據(jù)表中的數(shù)據(jù)討論下面兩個問題。
、僬叫蔚闹荛L與邊長成正比例嗎?為什么?
、谡叫蔚拿娣e與邊長成正比例嗎?為什么?
四、總結(jié)。
通過計算正方形周長與邊長的比值,我們可以判斷正方形的周長與邊長成正比例,因為它們的每組比值都相等,都是4;同樣通過計算正方形面積與邊長的比值,我們可以判斷它們不成正比例,因為它們每組的比值是不相同的,也就是說是不一定的。
板書設計:
正比例的意義
路程和時間是兩種相關聯(lián)的量,
時間變化,路程也隨著變化,當路程和對應時間的比的比值總是一定(也就是速度一定)時,
我們說行駛的路程和時間成正比例,行駛的路程和時間是成正比例的量。
正比例教學設計8
教學目的:
1、使學生透過具體問題認識成正比例的量,理解正比例的好處,能決定兩種量是否成正比例關系,能找出生活中成正比例量的實例,并進行交流。
2、引導學生透過觀察、交流、歸納、推斷等數(shù)學活動,感受數(shù)學思維過程的合理性,培養(yǎng)學生的觀察潛力、推理潛力、歸納潛力和靈活運用知識的潛力。
教具、學具準備:
教師準備視頻展示臺,多媒體課件;學生在布店里自己選取一種布,調(diào)查買1米布要多少錢,買2米布要多少錢…,將調(diào)查結(jié)果記錄好。
教學過程:
一、復習準備
1、什么是比例?
2、下面是一列火車行駛的時間和所行的路程,用這個表中的數(shù)能寫成多少個有好處的比?哪些比能組成比例?把能組成的比例都寫出來。
時間(時)27
路程(千米)180630
二、導入新課
教師:在上面的表中,有哪兩種數(shù)量?(時間和路程)我們還要遇到許多數(shù)量,如單價等。
三、進行新課
用多媒體課件在剛才準備題的表格中增加列和數(shù)據(jù),變成例1。
時間(時)
路程(千米)
教師:先獨立思考后再討論、交流、回答以下問題
。1)表中有哪兩種量?
(2)這兩種量是怎樣變化的?
。3)還能夠從表中發(fā)現(xiàn)哪些規(guī)律?
教師:同學們發(fā)現(xiàn)表中有時間和路程這兩種量,并且時間在擴大,路程也在擴大,路程總是隨著時間的變化而變化,我們就說時間和路程這兩種量是相關聯(lián)的。
板書:相關聯(lián)。
教師:你們還發(fā)現(xiàn)哪些規(guī)律呢?
引導學生歸納出:
(1)時間和路程是相關聯(lián)的兩種量,路程隨著時間的變化而變化;
。2)時間擴大,路程隨著擴大;時間縮小,路程也隨著縮;
。3)路程和時間的比值都是90;時間和路程的比值都是1/90。
路程和時間的比值是什么?(速度)
在這個表里,作為比值的速度即每小時所走的路程都是一個固定的數(shù),我們就說比值必須。也就是:(板書)路程/時間=速度(必須)
數(shù)量(米)1234567…
總價(元)8.216.424.632.841.049.257.4…
先觀察表中有哪兩種量?這兩種量是怎樣變化的`?再觀察這兩種量中相對應的兩個數(shù)的比值是否必須。
學生分析后引導學生歸納:
。1)表中買布的數(shù)量和買布的總價是相關聯(lián)的兩種量,總價隨著數(shù)量的變化而變化;
。2)數(shù)量擴大,總價隨著擴大;數(shù)量縮小,總價也隨著縮;
(3)總價和數(shù)量的比值是必須的,每米布的單價都是8.2元,它們之間的關系能夠?qū)懗煽們r/數(shù)量=單價(必須)。
教師:引導學生歸納出這兩個問題中都有兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,這兩種量中相對應的兩個數(shù)的比值必須。凡是貼合以上規(guī)律的兩種量,我們就把它叫做正比例的量,它們之間的關系就是正比例關系,如果用字母X和Y表示兩種相關聯(lián)的量,用K表示它們的比值,正比例關系能夠用式子表示為X/Y=K(必須)。
教師:請同學們相互說一說生活中還有哪些是成正比例的量?
指導學生完成第56頁“做一做”。
四、鞏固練習
指導學生完成練習十六第1~3題。
五、課堂小結(jié)
教師:這節(jié)課你們學到了哪些知識?用了哪些學習方法?還有哪些不懂的問題?
學生小結(jié)后教師對全課所學的知識進行歸納。
創(chuàng)意作業(yè)
小組四人分別出題,正比例的例子,一人回答,3人決定對錯不會的可請教老師。
正比例教學設計9
教學目標
1.使學生理解正比例的意義.
2.能根據(jù)正比例的意義判斷兩種量是不是成正比例.
3.培養(yǎng)學生的抽象概括能力和分析判斷能力.
教學重點
使學生理解正比例的意義.
教學難點
引導學生通過觀察、思考發(fā)現(xiàn)兩種相關聯(lián)的量的變化規(guī)律,即它們相對應的.數(shù)的比值一定,從而概括出正比例關系的概念.
教學過程
一、復習準備
口答(課件演示:成正比例的量)
1.已知路程和時間,怎樣求速度?
2.已知總價和數(shù)量,怎樣求單價?
3.已知工作總量和工作時間,怎樣求工作效率?
二、新授教學
(一)導入新課
這些都是我們已經(jīng)學過的常見的數(shù)量關系.這節(jié)課,我們繼續(xù)研究這些數(shù)量關系中的一些特征.
。ǘ┙虒W例1.(課件演示:成正比例的量)
1.一列火車1小時行駛90千米,2小時行駛180千米,3小時行駛270千米,4小時行駛360千米,5小時行駛450千米,6小時行駛540千米,7小時行駛630千米,8小時行駛720千米
2.出示下表,并根據(jù)上述內(nèi)容填表.
正比例教學設計10
趙喜梅老師執(zhí)教的是北師大版六年級下冊《正比例》第19頁——21頁的內(nèi)容。趙老師教學思路清晰,課堂上,讓學生自己觀察,自己比較分析,自己歸納,來發(fā)現(xiàn)正比例量的特征,并常試抽象概括正比例的意義,提高學生分析,判斷、概括、推理能力。突破了難點,基本上達到了教學目標。下面,談一下我對這節(jié)
課的個人看法:
一、注重數(shù)學和生活的聯(lián)系,課堂靈活開放。
老師從生活中的例子“買了一些蘋果,已經(jīng)吃了一部分,你想知道什么?”入手,引出數(shù)學的關聯(lián)的量上,然后讓學生從生活中找出相關聯(lián)的量,讓學生明白數(shù)學和生活密切相關。從“人的體重與門的`高度”還有“我們班的總?cè)藬?shù),滿意的人數(shù)和不滿意的人數(shù)是否成正比例?為什么?”,無不體現(xiàn)了數(shù)學知識運用與生活的特點,課堂設計靈活開放,鍛煉了學生的分散思維。
二、如花微笑,溫暖學生。
這節(jié)課上,趙老師從開始到結(jié)束,臉上都洋溢著迷人的微笑。微笑讓學生感到溫暖,身心放松,創(chuàng)造了和諧的教學課堂。我想在課堂微笑很容易做到,但難的是微笑一節(jié)課,不管是引導學生發(fā)言,講授新知識,還是針對練習我想趙老師是達到了教學思想的很高境界。
三、用問題引領學生,突出學生的主體地位。
“如果已知正方形的邊長,你能想到什么?”“你能用具體的數(shù)字說明它們之間的關系嗎?”“請同學們挑選其中的一個表格認真觀察,說說你發(fā)現(xiàn)了什么?”“如果把5個表格進行分類,你該怎么辦?”每到關鍵的部分,老師并不著急告訴學生答案,而是用思考性的問題引著學生積極思考,最后由學生自己一點一點總結(jié)出來,讓學生深刻理解知識點,從而達到突破重難點的目的。
正比例教學設計11
教學內(nèi)容:
本單元一共安排了三道例題和一個練習。先認識正比例的意義,接著認識正比例的圖象,再認識反比例的意義,最后安排了一些鞏固練習和綜合練習。
教材分析:
本單元內(nèi)容是在學生已經(jīng)學習了比和比例等知識的基礎上進行教學的,主要讓學生結(jié)合實際情境認識成正比例和反比例的量。正、反比例的知識在日常生活和工農(nóng)業(yè)生產(chǎn)中有著廣泛的應用,而且還是今后進一步學習中學數(shù)學、物理、化學等知識的重要基礎,因而學好這部分知識非常重要。通過學習這部分知識,還可以幫助加深對過去學過的數(shù)量關系的認識,使學生初步會從變量的角度來認識兩個量之間的關系,從而初步體會函數(shù)的思想。
教學目標:
1、使學生結(jié)合實際情境認識成正比例和反比例的量,能根據(jù)正、反比例的意義判斷兩種相關聯(lián)的量是否成正比例和反比例。
2、使學生初步認識正比例的圖象是一條直線,能利用給出的具有正比例關系的數(shù)據(jù)在方格紙上畫出相應的直線,能根據(jù)具有正比例關系的一個量的數(shù)值看圖估計另一個量的數(shù)值。
3、使學生在認識成正比例、反比例的量的過程中,初步體會數(shù)量之間相依互變的關系,感受有效表示數(shù)量關系及其變化規(guī)律的不同數(shù)學模型,進一步提升思維水平。
4、使學生進一步體會數(shù)學與日常生活的密切聯(lián)系,增強探索數(shù)學知識和規(guī)律的意識,養(yǎng)成積極主動哦參與學習活動的習慣,提高學好數(shù)學的自信心。
教學重點:
認識正、反比例的意義
教學難點:
根據(jù)正、反比例的意義正確判斷兩種相關聯(lián)的量是否成正比例或反比例。
課時安排:
正比例和反比例(4課時)
第1課時
教學內(nèi)容
成正比例的量
教材第62—63頁的例1和試一試,練一練和練習十三的第1—3題
課型
新授
本單元教時數(shù):4本教時為第1教時備課日期月日
教學目標
1、使學生經(jīng)歷從具體實例中認識成正比例的量的過程,初步理解正比例的意義,學會根據(jù)正比例的意義判斷兩種相關聯(lián)的量是不是成正比例。
2、2、使學生在認識成正比例的量的過程中,初步體會數(shù)量之間的相依互變的關系,感受有效表示數(shù)量關系及其變化規(guī)律的不同數(shù)學模型,進一步培養(yǎng)觀察能力和發(fā)現(xiàn)規(guī)律的能力。。
3、使、學生進一步體會數(shù)學與日常生活的密切聯(lián)系,增強從生活現(xiàn)象中探索數(shù)學知識和規(guī)律的能力。
教學重點
使學生經(jīng)歷從具體實例中認識成正比例的量的過程,初步理解正比例的意義,學會根據(jù)正比例的意義判斷兩種相關聯(lián)的量是不是成正比例。
教學難點
根據(jù)正比例的意義正確判斷兩種相關聯(lián)的量是不是成正比例。
教學準備
光盤課件
教學過程設計
教學內(nèi)容
教師活動
學生活動
二次備課
一、教學例1
1、談話引出例1的表格
2、這兩種量的數(shù)據(jù)是怎樣變化的?
時間在擴大,路程也隨著擴大,時間在縮小,路程也在縮小。
小結(jié):路程和時間是兩種相關聯(lián)餓量,時間在變化,路程也隨著變化。
3、但是,你能發(fā)現(xiàn)什么呢?
如果學生發(fā)現(xiàn)不了,就要求學生寫出幾組路程與時間的比,并求出比值。
這個比值是什么呢?
誰能用一句話來概括例1中的變化與不變
4、介紹成正比例的量
指名說說,表中有哪兩種量
引導學生觀察,
指名說一說。
啟發(fā)學生從“變化”中尋找“不變”。
學生試著回答,教師幫助完成。
學生完整的說說路程和時間成正比例的量
二、教學試一試
1、出示教材試一試
教師指導學生完成
學試著完成,并交流回答四個問題。
三、概括意義
1、引導學生觀察例1和試一試,它們有什么共同點。
2、概括正比例的'意義,揭示課題(板書)
3、用字母怎樣表示成正比例關系的兩種量呢?
y:x=k(一定)
觀察,說說自己的發(fā)現(xiàn)。
學生完整的說一說例1和試一試成正比例關系。
四、鞏固練習
1、完成練一練
2、練習十三第1題
重點讓學生說出判斷的理由
3、做練習十三第2題
4、做練習十三第3題
引導學生根據(jù)計算的結(jié)果來判斷。完成書上的問題
重點讓學生理解:只有當兩種相關聯(lián)的量的比值一定時,它們才成正比例的量。
獨立判斷,交流時說出判斷的理由。
學生先各自算一算,交流,說出思考過程。
指名判斷,交流時說出思考過程,其它同學進行補充或糾正。
學生理解題意,然后在書上畫一畫,算一算,填在書上。
五、全課總結(jié)
學習了什么?你有什么收獲?
說一說
板書
正比例的意義
兩種相關聯(lián)的量=k(一定)y和x就成正比例的量
課后感受
第2課時
教學內(nèi)容
正比例的意義及其圖像
教材第63頁例2,隨后的練一練和練習十三的第4、5題
課型
新授
本單元教時數(shù):4本教時為第2教時備課日期月日
教學目標
1、使學生認識正比例的圖象,并借助直觀的圖象加深對成正比例量的變化規(guī)律的認識。
2、使學生能利用給出的具有正比例關系的數(shù)據(jù)在方格紙上畫出相應的直線,能根據(jù)具有正比例關系的一個量的數(shù)值看圖估計另一個量的數(shù)值。
教學重點
使學生認識正比例的圖象,并借助直觀的圖象加深對成正比例量的變化規(guī)律的認識。
教學難點
使學生能利用給出的具有正比例關系的數(shù)據(jù)在方格紙上畫出相應的直線,能根據(jù)具有正比例關系的一個量的數(shù)值看圖估計另一個量的數(shù)值。
教學準備
光盤課件
教學過程設計
教學內(nèi)容
教師活動
學生活動
二次備課
一、教學例2
1、先出示例1的表格
談話:同學們,像例1中成正比例的量的數(shù)據(jù),有時也可以用圖象的形式來表示。
出示已標出縱軸、橫軸以及相噶關信息的方格圖。教師先示范描一兩個點(邊講解邊示范),你們會描點嗎?
引導學生觀察這些點的排布規(guī)律,并用直線連起來。
提問:(1)圖中的a點表示1小時行80千米,b點表示5小時行400千米,你知道其它各點分別表示什么嗎?(任意指幾個點讓學生回答)
(2)圖中所描的點在一條直線上嗎?
。3)根據(jù)圖象判斷一下,這輛汽車2。5小時行駛多少千米?行駛440千米需要多少小時?
學生描點。
學生按要求操作完成。
指名回答
如果學生回答有困難,可以啟發(fā)先在橫軸上找到表示2.5小時的點,并從這點起作縱軸的平行線,從而得到與已知圖象的交點;再從交點起作橫軸的平行線,從而得到與縱軸的交點;最后依據(jù)與縱軸的交點進行估計。
二、鞏固練習
1、練一練
學生做好后展示學生畫的圖象,共同評議
問:你們畫出的表示打字時間和打字個數(shù)關系的圖象有什么特點?
指名回答第(3)個問題
追問:你是怎樣判斷打750個字用多少分鐘的?估計7分鐘、10。5分鐘呢?打450個字、625個字各用幾分鐘?
2、練習十三第4題
既可以根據(jù)圖象的特點說明,也可以從圖象上選取幾個點,求出比值來作判斷。
第二題要求估計,答案出入是允許的
3、第5題
先讓學生獨立完成,在組織交流,幫助學生進一步明確方法,加深認識。
學生獨立完成
指名回答第(2)個問題
學生相互間說一說
學生回答,要說明理由
討論第(4)小題后,引導學生在提出一些類似的問題并進行解答。
三、全課總結(jié)
今天學習了什么?你有了什么新的認識?你知道今后還可以根據(jù)什么來判斷兩種量是否成正比例的量嗎?
說說,議論議論。
板書
正比例的意義及其圖像
例2(圖像)
課后感受
正比例教學設計12
一、教材分析
【復習內(nèi)容】
教科書第12冊94頁“整理與反思”和94-95頁“練習與實踐”1-6題
【知識要點】
1.比和比例的意義與性質(zhì):
比比例
意義兩個數(shù)的比表示兩個數(shù)相除。(老教材:兩個數(shù)相除又叫做這兩個數(shù)的比.)表示兩個比相等的式子叫做比例。
基本
性質(zhì)比的前項和后項都乘或除以相同的數(shù)(0除外),比值不變。在比例里,兩個外項的積等于兩個內(nèi)項的積。
2.比、分數(shù)與除法的關系:
a:b==a÷b(b≠0)
3.求比值和化簡比的聯(lián)系與區(qū)別:
意義方法結(jié)果
求比值比的前項除以比的后項所得的商叫做比值。前項除以后項一個數(shù)(整數(shù)、小數(shù)、分數(shù))
化簡比把兩個數(shù)的比化成最簡單的整數(shù)比前項和后項都乘或除以相同的數(shù)(0除外)一個比
4.圖形的放大與縮。ㄐ陆滩脑黾拥膬(nèi)容)
5.解比例
6.按比例分配的實際問題
【教學目標】
1.使學生進一步理解比的意義和基本性質(zhì)以及比與分數(shù)、除法的關系;理解比的基本性質(zhì)與分數(shù)的基本性質(zhì)、商不變的規(guī)律內(nèi)在一致性;理解比例的意義和基本性質(zhì)。
2.運用比較的方法,有利于學生對所學知識的理解,促進學生對數(shù)學知識的靈活運用。
3.能運用比和比例的知識解決一些簡單實際問題,豐富解決問題策略,積累解決問題的經(jīng)驗。
二、教學建議
復習比的知識抓住三點進行:一是舉實例說說什么是比,既要有兩個同類數(shù)量的比,也要有兩個不同類數(shù)量的比,使學生對比的含義有比較全面的理解。二是通過改寫a∶b,溝通比與分數(shù)、除法的關系,從除數(shù)不能是0體會分母、比的后項也不能是0。三是找出比的基本性質(zhì)、分數(shù)的基本性質(zhì)和商不變的規(guī)律之間的內(nèi)在聯(lián)系,完善認知結(jié)構。
練習與實踐中,要利用第3題里的比組成比例,回憶比例的意義和性質(zhì),理解把照片①變成照片④是把圖形按一定的比縮小,把照片④變成照片①是按一定的比把圖形放大。
三、知識鏈結(jié)
1.認識比(教科書六上P68、69例1例2)
2.比的基本性質(zhì)(教科書六上P70、例3)
3.化簡比(教科書六上P71例4)
4.按比例分配(教科書六上P75例5)
5.圖形的放大與縮小(教科書六下P38、39例1例2)
6.比例的意義和性質(zhì)(教科書六下P40例3、P43例4)
7.解比例(六下P45例5)
四、教學過程
(一)比的知識:
1.舉例說說什么是比?什么是比的基本性質(zhì)?
2.說一說用比的知識可以解決哪些實際問題。
3.完成教科書p94“練習與實踐”
。1)完成第一題:學生獨立數(shù)出班上男女生人數(shù),再完成此題。
。2)完成第二題:兩人一組,互相量一量,算一算合作完成后,全班交流結(jié)果,讓學生比較后回答有什么發(fā)現(xiàn)。
(二)比和分數(shù)、除法的聯(lián)系
出示:a∶b=( )( )=( )÷( )(b≠0)
1.先填空,再說說這樣填的根據(jù)是什么?
2.說說比的基本性質(zhì)與分數(shù)的基本性質(zhì)、商不變的規(guī)律的聯(lián)系。
3.練一練:
。1)判斷:比的前項和后項都乘或都除以相同的數(shù),比值不變。( )
。2)填空:( )( )=( )÷( )=( )∶( )(填好后展示學生不同的.結(jié)果。)
(三)比例的知識
1.什么是比例?
2.比和比例有什么關系?(小組討論后交流)
3.比例的基本性質(zhì)是什么?
4.比例的基本性質(zhì)有什么作用?怎樣解比例?
5.練一練:完成教科書p94“練習與實踐”
。1)完成第3題:在做第二小題時先讓學生估計,再說估計的理由。
估計后再算一算,來驗證估計。
。2)完成第4題:解比例,做好后選兩題驗算一下。
。ㄋ模┩瓿山炭茣鴓95“練習與實踐”
(1)完成第5題:先學生獨立做最后交流第二小題應弄清東部地區(qū)的耕地面積占全國耕地面積的93%,可理解為東部地區(qū)的耕地面積占全國耕地面積的93100。換句話說把全國耕地面積看作100份,東部占93份,西部占7份。使學生加深對比與百分數(shù)關系的理解。
(2)完成第6題:第一小題讓學生獨立得出:深色與淺色地磚鋪地面積的比是20∶40,化簡得1∶2。
第二小題這兩種地磚鋪地面積,讓學生利用按比例分配的方法計算。
(五)評價小結(jié):
學了本課你對所學知識有什么新認識?還有什么問題?
習題精編
一、對號入座。
1.( )÷10=0.6=( )%=( ):( )=
2.把:化成最簡單的比是( );千克:400克的比值是( )。
3.甲乙兩數(shù)的比是3:5,甲數(shù)是乙數(shù)的( )%,乙數(shù)是甲數(shù)的( )%,甲數(shù)與兩數(shù)和的比是( )。
4.一杯400克的鹽水,含糖率是20%,糖與糖水的比是( ),再加入20克糖,糖與糖水的比是( )。
5.把3:8的前項加上6,要使比值不變,后項可以乘( )或加( )
6.如果A×=B×,那么A:B=( ):( ),當A=0.8時,B=( )
正比例教學設計13
【教學目標】
1、使學生理解正比例的意義,能根據(jù)正比例的意義判斷是不是成正比例。
2、培養(yǎng)學生概括能力和分析判斷能力。
3、培養(yǎng)學生用發(fā)展變化的觀點來分析問題的能力。
【教學重難點】
重點:
成正比例的量的特征及其斷方法。
難點:
理解兩個變量之間的比例關系,發(fā)現(xiàn)思考兩種相關聯(lián)的量之間的變化規(guī)律。
【教學過程】
一、四顧舊知,復習鋪墊
商店里有兩種包裝的襪子,一種是5雙一包的,售價為25元,一種是8雙一包的,售價為32元。哪種襪子更便宜?
學生獨立完成后師提問:你們是怎樣比較的?
生:我先求出每種襪子的單價,再進行比較。
師:你是根據(jù)哪個數(shù)量關系式進行計算的?
生:因為總價=單價×數(shù)量,所以單價=總價÷數(shù)量。
師:如果單價不變,商品的總價和數(shù)量的變化有什么規(guī)律呢?這節(jié)課,我們就來研究正比例。(板書:正比例)
二、引導探索,學習新知
1、教學例1,學習正比例的意義。
(1)結(jié)合情境圖,觀察表中的數(shù)據(jù),認識兩種相關聯(lián)的量。師出示自學提示:表中有哪兩種量?總價是怎樣隨著數(shù)量的變化而變化的?學生自學并在組內(nèi)交流。全班交流。
(2)認識相關聯(lián)的量。明確:像這樣,一種量變化,另一種量也隨著變化,這兩種量叫做相關聯(lián)的量。
2、計算表中的數(shù)據(jù),理解正比例的意義。
(1)計算相應的總價與數(shù)量的比值,看看有什么規(guī)律。學生計算后匯報:===…=3、5,每一組數(shù)據(jù)的比值一定。
(2)說一說,每一組數(shù)據(jù)的比值表示什么?(彩帶的單價,也就是彩帶的單價是一個固定的數(shù))
(3)請學生用公式把彩帶的總價、數(shù)量、單價之間的關系表示出來。
(4)明確成正比例的量及正比例關系的意義。兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。如果用字母y和x表示兩種相關聯(lián)的量,用字母k表示它們的比值(一定),正比例關系可以用下面的式子表示:
3、列舉并討論成正比例的量。
(1)生活中還有哪些成正比例的量?預設:速度一定,路程與時間成正比例;長方形的寬一定,面積和長成正比例。
(2)小結(jié):成正比例的量必須具備哪些條件?哪個條件是關鍵?
兩種量中相對應的兩個數(shù)的`比值一定,這是關鍵。
4、認識正比例圖象。(課件出示例1的表格及正比例圖象)
(1)觀察表格和圖象,你發(fā)現(xiàn)了什么?
(2)把數(shù)對(10,35)和(12,42)所在的點描出來,再和上面的圖象連起來并延長,你還能發(fā)現(xiàn)什么?
無論怎樣延長,得到的都是直線。
(3)從正比例圖象中,你知道了什么?
生1:可以由一個量的值直接找到對應的另一個量的值。
生2:可以直觀地看到成正比例的量的變化情況。
(4)利用正比例圖象解決問題。
不計算,根據(jù)圖象判斷,如果買9m彩帶,總價是多少?49元能買多少米彩帶?
小明買的彩帶的米數(shù)是小麗的2倍,他花的錢是小麗的幾倍?預設生:因為在單價一定的情況下,數(shù)量與總價成正比例關系,小明買的彩帶的米數(shù)是小麗的2倍,他花的錢也應是小麗的2倍。設計意圖:先從觀察圖象入手,引導學生直觀認識相關聯(lián)的量,再結(jié)合表中的數(shù)據(jù),引導學生發(fā)現(xiàn)總價與數(shù)量的比值一定,使學生理解正比例的意義,最后結(jié)合正比例圖象,把數(shù)據(jù)與點聯(lián)系起來,根據(jù)圖象,不用計算就能找到一個量的值所對應的另一個量的值,使學生在解決問題的同時,感受數(shù)形結(jié)合思想。
三、課堂練習:
1、P46“做一做”
2、練習九第1、3~7題
正比例教學設計14
【教學內(nèi)容】
《義教課標實驗教科書數(shù)學》(人教版)六年級下冊第39-41頁成正比例的量。
【教學目標】
1、使學生理解正比例的意義,會正確判斷成正比例的量。
2、使學生了解表示成正比例的量的圖像特征,并能根據(jù)圖像解決有關簡單問題。
【教學重點】
正比例的意義。
【教學難點】
正確判斷兩個量是否成正比例的關系。
【教學準備】
多媒體課件
【自學內(nèi)容】
見預習作業(yè)
【教學預設】
一、自學反饋
1、揭題:今天這節(jié)課,我們一起學習成正比例的量。板書:成正比例的量
2、通過自學,你能說說什么叫做成正比例的量?
3、你是怎樣理解成正比例的量的含義的?
4、在現(xiàn)實生活中,我們常常遇到兩種相關聯(lián)的量的變化情況,其中一種量變化,另一種量也隨著變化,你以舉出一些這樣的例子嗎?
在教師的引導下,學生會舉出一些簡單的例子。
二、關鍵點撥
1、正比例的意義
(1)出示表格。
高度/㎝24681012
體積/㎝350100150200250300
底面積/㎝2
問:你有什么發(fā)現(xiàn)?
學生不難發(fā)現(xiàn):杯子的底面積不變,是25平方厘米。
板書:
教師:體積與高度的比值一定。
(2)說明正比例的意義。
因為杯子的底面積一定,所以水的體積隨著高度的變化而變化。水的`高度增加,體積也相應增加,水的高度降低,體積也相應減少,而且水的體積和高度的比值一定。
板書出示:像這樣,兩種相關聯(lián)的量,一種量變化,另一種子量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值一定,這兩種理就叫做成正比例的量,它們的關系叫做正比例關系。
。3)用字母表示。
如果用字母X和Y表示兩種相關聯(lián)的量,用K表示它們的比值(一定),比例關系可以用正的式子表示:
2、判斷正比例關系:下面哪些是成正比例的兩個量?
長方形的寬一定,面積和長成正比例。
每袋牛奶質(zhì)量一定,牛奶袋數(shù)和總質(zhì)量成正比例。
衣服的單價一不定期,購買衣服的數(shù)量和應付錢數(shù)成正比例。
地磚的面積一定,教室地板面積和地磚塊數(shù)成正比例。
三、鞏固練習
1、學生獨立完成例2后反饋交流。
(1)從圖中你發(fā)現(xiàn)了什么?
這些點都在同一條直線上。
。2)看圖回答問題。
、偃绻兴母叨仁7㎝,那么水的體積是多少?
②體積是225㎝3的水,杯里水面高度是多少?
、郾兴母叨仁14㎝,那么水的體積是多少?描出這一對應的點是否在直線上?
。3)你還能提出什么問題?有什么體會?
2、做一做。
過程要求:
(1)讀一讀表中的數(shù)據(jù),寫出幾組路程和時間的比,說一說比值表示什么?
(2)表中的路程和時間成正比例嗎?為什么?
(3)在圖中描出表示路程和時間的點,并連接起來。有什么發(fā)現(xiàn)?所描的點在一條直線上。
。4)行駛120KM大約要用多少時間?
(5)你還能提出什么問題?
3、獨立完成第44頁練習七第1、2題。
4、判斷并說明理由。
。1)圓的周長和直徑成正比例。
(2)圓的周長和半徑成正比例。
。3)圓的面積和半徑成正比例。
四、分享收獲暢談感想
這節(jié)課,你有什么收獲?聽課隨想
正比例教學設計15
教學內(nèi)容:
蘇教版義務教育課程標準實驗教科書第94頁《正比例和反比例》“練習與實踐”的第1-6題。
教材學情分析:
《正比例和反比例》復習教材上分為兩個部分,“整理與反思”部分主要復習比的意義和性質(zhì),以及成正比例和反比例的量。教材先引導學生結(jié)合具體的例子回憶并整理比的意義、基本性質(zhì)以及比的應用,再用填空的形式幫助學生進一步明確比與分數(shù)、除法的關系。在此基礎上,要求學生說說比的基本性質(zhì)與分數(shù)的基本性質(zhì)、商不變的規(guī)律有什么聯(lián)系和區(qū)別。這樣的比較有利于學生體會比的基本性質(zhì)與分數(shù)的基本性質(zhì)、商不變的規(guī)律的一致性,有利于學生加深對比與分數(shù)、除法關系的理解,促進學生對數(shù)學知識的靈活運用。接下來,教材重點引導學生交流判斷兩種量是否成比例、成什么比例的思考方法,并要求學生找出一些生活中成正比例或反比例量的例子,幫助學生進一步認識成正比例和反比例的量,感受正比例和反比例是描述數(shù)量關系及其變化規(guī)律的又一種有效的數(shù)學模型。
“練習與實踐”第1題讓學生寫出本班的男、女生人數(shù),再要求學生分別寫出男生和女生人數(shù),在要求學生分別寫出男生和女生人數(shù)的比以及女生和全班人數(shù)的比,幫助學生在練習中進一步理解比的意義,掌握用比表示數(shù)量之間關系的基本方法;“練習與實踐”第2題讓學生先分小組量一量人體有關部分的長度,再按要求寫出部分長度的比,再求出比值。然后啟發(fā)學生通過進一步的交流和比較,發(fā)現(xiàn)一些有趣的現(xiàn)象。這樣的活動,既有較強的趣味性,又能較好體現(xiàn)比的應用價值,有利于吸引學生積極主動參與活動,并在活動中獲得一些新的認識;“練習與實踐”第3題結(jié)合直觀的圖片,先讓學生按要求寫出一些比,再估計寫出的這些比中哪兩個比可以組成比例,并通過計算加以驗算。這里的估計即可以依據(jù)每一個比中前項和后項之間的關系,也可以依據(jù)相應長方形圖片的形狀,因而這個活動既能幫助學生復習比例的意義,又有利于學生進一步體會圖形的放大和縮小與比例的內(nèi)在聯(lián)系;“練習與實踐”第4題是解比例的練習。練習的目的主要是讓學生進一步理解比例的基本性質(zhì),并掌握解比例的基本方法;“練習與實踐”第5題提供了對我國東、西部地區(qū)各類土地資源面積進行比較的百分數(shù),要求學生把其中一些用百分數(shù)表示的數(shù)量關系改寫成用比表示,并交流從這組數(shù)據(jù)中所獲得的其他信息。通過練習,可以使學生進一步體會比和百分數(shù)在表示數(shù)量關系方面的各自特點,加深對比與百分數(shù)關系的理解;“練習與實踐”第6題先讓學生看圖寫出一個房間中兩種地磚面積的比,再讓學生聯(lián)系這個房間算出這兩種地磚的面積,幫助學生進一步理解比的意義,掌握解決按比例分配的實際問題的基本方法。
教學目標:
、攀箤W生進一步理解比的意義和基本性質(zhì),理解比與分數(shù)、除法的關系,能根據(jù)要求求比值、化簡比;理解比例的意義和基本性質(zhì),會解比例;認識成正比例和反比例的`量,感受表示數(shù)量關系及其變化規(guī)律的不同數(shù)學模型;能運用比和比例的知識解決一些簡單實際問題,豐富解決問題策略,積累解決問題的經(jīng)驗。
、仆ㄟ^量一量等操作活動,吸引學生積極主動參與,感受比的應用價值,在活動中獲得一些新的認識;
、鞘箤W生在系統(tǒng)復習的過程中,體驗與同學合作交流以及獲取知識的樂趣,增進對數(shù)學學習的積極情感,增強學好數(shù)學的信心。
教學重點:進一步理解比和比例的一些知識。
教學難點:感受比的應用價值,在活動中獲得一些新的認識。
教學具準備:
教學流程:
一、自主學習,完成練習。
⑴揭示課題。
教師談話:今天我們復習《正比例和反比例》。板書課題——“正比例和反比例”。
、谱灾骶毩。
教師談話:用5-8分鐘的時間閱讀課本94頁的內(nèi)容,完成“練習與實踐”1-6題,其中“練習與實踐”第2題作為課前活動,“練習與實踐”第1題本班的男女生人數(shù)板書在黑板上,男生24人、女生27人。
學生自主練習,教師巡視。
二、交流討論,梳理知識。
、耪肀鹊闹R。
交流“練習與實踐”第1題的答案,并矯正;理解“男生和女生人數(shù)的比是8:9”的意思,一般表示男生是女生人數(shù)的8/9,男生和女生人數(shù)是除法關系;“男生和女生人數(shù)的比是8:9”由比24:27化簡而來,回憶比的基本性質(zhì);體會“女生和全班人數(shù)的比是9:17”答案由來的多種途徑。
、聘惺苌钪械谋壤
交流頭長和身高的比,讓多名學生將自己頭長和身高的比和比值板書在黑板上;指導學生取近似值,整理答案,再說說自己的發(fā)現(xiàn),比值一般很接近的,感受生活中的比例。
、钦肀壤闹R。
交流“練習與實踐”第3題的答案,并矯正;根據(jù)寫成的比例理解比例的意義,根據(jù)圖形的放大或縮小溝通比的基本性質(zhì)和分數(shù)基本性質(zhì)的一致性;根據(jù)圖形的放大或縮小體會和比例的關系。
⑷整理解比例的知識。
交流“練習與實踐”第4題的答案,并矯正;理解比例的基本性質(zhì),以及在解比例中運用,掌握解比例的方法。
、山鉀Q實際問題。
交流“練習與實踐”第5題,先說說對表中百分數(shù)的理解,交流我國東西部各自的特點;掌握把兩個數(shù)量的百分數(shù)關系改寫成比的一般方法,用對應的分數(shù)表示前項和后項,再化簡。交流“練習與實踐”第6題,說說得到兩種地磚鋪地面積比的思考過程,因為每塊地磚的大小是相同的,所以可以轉(zhuǎn)化成塊數(shù)來寫出面積的比;交流問題2的解決過程,體會比的應用。
、收務劚竟(jié)課的收獲。
【正比例教學設計】相關文章:
正比例教學設計12-29
正比例教學反思04-09
教學設計模板-教學設計模板07-16
流程設計教學設計12-09
教學設計01-14
《巴西》教學設計08-19
《將心比心》教學設計06-02
《春》教學設計04-01
頤和園教學設計04-03
散步教學設計04-07